Prospects of the multiangle scanning method for determining the transverse profile of a medical electron beam

«Radiation and Risk», 2023, vol. 32, No. 2, pp.66-77

DOI: 10.21870/0131-3878-2023-32-2-66-77


Bulavskaya A.A. – Senior Lecturer, С. Sc., Phys.-Math.
Batranin A.V. – Associate Prof., С. Sc., Tech.
Bushmina E.A. – Engineer
Cherepennikov Yu.M. – Associate Prof., С. Sc., Tech.
Grigorieva A.A. – Engineer
Stuchebrov S.G. – Associate Prof., С. Sc., Phys.-Math. NRTPU.
Miloichikova I.A. – Medical Physicist, С. Sc., Phys.-Math NRTPU, CRI of Tomsk NRMC. Contacts: 5 Kooperativny Str., Tomsk, Russia, 634009. Tel.: +7 (3822) 282686; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. .
1 National Research Tomsk Polytechnic University, Tomsk
2 Cancer Research Institute of Tomsk National Research Medical Centre of the RAS, Tomsk


This study is aimed at assessing the applicability of the proposed method of multiangle beam scanning for determining the transverse profile of an electron beam. The application area of the proposed approach will be control of the therapeutic beams spatial and dose characteristics in order to increase the irradiation accuracy and, as a result, reduce the side effects of radiation therapy. One of the main applied problems to be solved by the proposed approach is to determine the beam characteristics during electron beam therapy. For carrying out of electron beam therapy procedures it is necessary to form electron beams with the complex shape of transverse profile. The need to precisely control beam shapes throughout all irradiation stages determines the relevance of this study. The integral transform method was used in this study to obtain distributions of medical electron beam intensity. For the study, we used electron beam transverse profiles calculated on the basis of a radiation therapy planning system for real clinical cases. The method was applied both theoretical beam profiles with sharp edge and to ones experimentally obtained with real medical electron beams. Integral transforms were performed for a different number of scan projections. Due to this, the optimal number of projections was calculated for each considered profile. The results of the study demonstrate that the multiangle beam scanning method needs 12 scan projections which corresponds to an angular displacement of 15° to control the medical electron beam profile.

Key words
transverse beam profile, beam diagnostics, data reconstruction, multiangle scanning, film dosimeter, medical electron beams, electron beam therapy, radiation therapy plan, medical linear accelerator.


1. Khan F.M., Gibbons J.P. Khan's the physics of radiation therapy. 5th edition. Philadelphia, USA, Lippincott Williams & Wilkins, 2014. 584 p.

2. Poppe B., Djouguela A., Blechschmidt A., Willborn K., Rühmann A., Harder D. Spatial resolution of 2D ionization chamber arrays for IMRT dose verification: single-detector size and sampling step width. Phys. Med. Biol., 2007, vol. 52, no. 10, pp. 2921-2935.

3. Galvin J.M., Bednarz G. Quality assurance procedures for stereotactic body radiation therapy. Int. J. Radiat. Oncol. Biol. Phys., 2008, vol. 71, no. 1, pp. S122-S125.

4. Webb S. Intensity-modulated radiation therapy (IMRT): a clinical reality for cancer treatment, “any fool can under-stand this”. The 2004 Silvanus Thompson Memorial Lecture. Br. J. Radiol., 2005, vol. 78, no. 2, pp. S64-S72.

5. Sorriaux J., Kacperek A., Rossomme S., Lee J.A., Bertrand D., Vynckier S., Sterpin E. Evaluation of Gafchromic® EBT3 films characteristics in therapy photon, electron and proton beams. Phys. Med., 2013, vol. 29, no. 6, pp. 599-606.

6. Borca V.C., Pasquino M., Russo G., Grosso P., Cante D., Sciacero P., Girelli G., La Porta M.R., Tofani S. Dosimetric characterization and use of GAFCHROMIC EBT3 film for IMRT dose verification. J. Appl. Clin. Med. Phys., 2013, vol. 14, no. 2, pp. 158-171.

7. Han Y. Review on the pre-treatment quality assurance for intensity modulated radiation therapy. Prog. Med. Phys., 2013, vol. 24, no. 4, pp. 213-219.

8. Ivanova S.D., Oshurko V.B., Shemonaev D.D. Fizicheskiye osnovy izmereniya dliny kogerentnosti s pomoshch’yu interferometra s treugol’nym khodom luchey [Physical basis for measuring coherence detection with a triangular path interferometer]. Izvestiya vysshikh uchebnykh zavedeniy. Fizika – Russian Physics Journal, 2021, vol. 64, no. 3, pp. 166-167.

9. Aryshev A., Blair G.A., Boogert S.T., Boorman G., Bosco A., Corner L., Deacon L., Delerue N., Foster B., Gannaway F., Hayano H., Howell D., Karataev P., Nevay L., Newman M., Senanayake R., Terunuma N., Urakawa J., Walczak R. Micron size laser-wire system at the ATF extraction line, recent results and ATF-II upgrade. Nucl. Instrum. Methods Phys. Res. A: Accel., Spectrom., Detect. Assoc. Equipm., 2010, vol. 623, no. 1, pp. 564-566.

10. Dai W., Ren-Jun Y., Wei B., Peng L., Ming L., Xing-Fan Y. Design study of an improved laser wire system for electron beam measurement. Chin. Phys. C, 2013, vol. 37, no. 10, pp. 108101.

11. Liu Y., Aleksandrov A., Assadi S., Blokland W., Deibele C., Grice W., Long C., Pelaia T., Webster A. Laser wire beam profile monitor in the spallation neutron source (SNS) superconducting linac. Nucl. Instrum. Methods Phys.s Res. A: Accel., Spectrom., Detect. Assoc. Equipm., 2010, vol. 612, no. 2, pp. 241-253.

12. Chaikovska I., Chehab R., Artru X., Shchagin A.V. Characteristic, parametric and diffracted transition X-ray radiation for observation of accelerated particle beam profile. Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. At., 2017, vol. 402, pp. 75-78.

13. Vukolov A.V., Novokshonov A.I., Potylitsyn A.P., Uglov S.R. Electron beam diagnostics tool based on Cherenkov radiation in optical fibers. J. Phys.: Conf. Ser., 2016, vol. 732, no. 1, pp. 012011.

14. Kube G. Radiation sources and their application for beam profile diagnostics. Proceedings of IBIC-2014, Monterey, California, USA, 2014, pp. 263-273.

15. Takabayashi Y., Sumitani K. New method for measuring beam profiles using a parametric X-ray pinhole camera. Phys. Lett. A, 2013, vol. 377, no. 38, pp. 2577-2580.

16. Nikishkin T.G. Razrabotka modeli portativnogo stsintillyatsionnogo detektora gamma-izlucheniya na osnove tverdotel’nykh mikropiksel’nykh lavinnykh fotodiodov [Development of a model of a portable scintillation de-tector of gamma radiation based on solid-state micropixel avalanche photodiodes]. Izvestiya vysshikh uchebnykh zavedeniy. Fizika – Russian Physics Journal, 2021, vol. 64, no. 2-2, pp. 73-77.

17. Karataev P., Araki S., Hamatsu R., Hayano H., Muto T., Naumenko G., Potylitsyn A., Terunuma N., Urakawa J. Beam-size measurement with optical diffraction radiation at KEK accelerator test facility Phys. Rev. Lett., 2004, vol. 93, no. 24, pp. 244802.

18. Stuchebrov S.G., Cherepennikov Yu.M., Krasnykh A.A., Miloichikova I.A., Vukolov A.V. The method for the electron beam cross section measurement based on the detection of Cherenkov radiation in dielectric fiber. J. Instrum., 2018, vol. 13, no. 5, pp. C05020.

19. Baldin A., Aryshev A., Avetisyan A., Aloyan L., Baldina E., Bazarov Yu., Bogoslovsky D., Bleko V., Beloborodov A., Bulavskaya A., Cherepennikov Yu., Dalyan Y., Dorokhov A., Fedorov A., Fedorov K., Gostkin M., Grigoryan L., Karapetyan N., Karataev P., Karpov M., Kharyuzov P., Kocharyan V., Korovkin D., Kuleshov S., Safonov A., Kishchin I., Kim V., Kobets V., Kubankin A., Kuznetsova E., Mkrtchyan A., Movsisyan A., Myshelovka L., Nazhmudinov R., Popov K., Potylitsyn A., Saharian A., Samofalova I., Shahbazyan A., Stuchebrov S., Trifonov A., Tyutyunnikov S., Vokhmyanina K., Yunenko K., Zakhvalinskii V., Saa J.Z., Zelenov A., Zhemchugov A. FLAP collaboration: tasks and perspectives. Study of fundamentals and new applications of controllable generation of electromagnetic radiation by relativistic electrons using func-tional materials. Phys. Part. Nucl. Lett., 2021, vol. 18, no. 3, pp. 338-353.

20. Bulavskaya A.A., Cherepennikov Yu.M., Chakhlov S.V., Grigorieva A.A., Miloichikova I.A., Vukolov A.V., Stuchebrov S.G. Measurement of electron beam transverse flux density distribution. IOP Conf. Ser.: Mater. Sci. Eng., 2021, vol. 1019, no. 1, pp. 012043.

21. Bulavskaya A.A., Cherepennikov Yu.M., Grigorieva A.A., Miloichikova I.A., Stuchebrov S.G. Multiangle scanning for measuring radiation beam profiles with a typical size of 10 millimetres – Proof-of-principle experiments. J. Instrum., 2022, vol. 17, no. 7, pp. T07004.

22. Elekta XiO Comprehensive RTP system. information and reference portal. Noida, 1996-2022. Available at: (Accessed 06.10.2022).

23. Elekta Synergy Digital accelerator for advanced IGRT. official site. Crawley, 2005-2022. Available at: (Accessed 06.10.2022).

24. GAFCHROMIC DOSIMETRY MEDIA, TYPE EBT-3. official site. Bridgewater Township, 2005-2022. Available at: URL: (Accessed 06.10.2022).

25. Matlab. official site. Netike, 1994-2022. Available at: URL: (Accessed 06.10.2022).

26. Wang C.X., Snyder W.E., Bilbro G., Santago P. Performance evaluation of filtered backprojection reconstruc-tion and iterative reconstruction methods for PET images. Comput. Biol. Med., 1998, vol. 28, no. 1, pp. 13-25.

27. Wang Z., Bovik A.C., Sheikh H.R., Simoncelli E.P. Image quality assessment: from error visibility to struc-tural similarity. IEEE Trans. Image Process., 2004, vol. 13, no. 4, pp. 600-612.

28. Shi H., Luo S., Yang Z., Wu G. A novel iterative CT reconstruction approach based on FBP algorithm. PLoS One, 2015, vol. 10, no. 9, pp. e0138498.

29. Chen C.C., Chu H.T. Similarity measurement between images. 29th Annual International Computer Software and Applications Conference (COMPSAC'05). IEEE, 2005, vol. 2, pp. 41-42.

30. Wang L., Zhang Y., Feng J. On the Euclidean distance of images. IEEE Trans. Pattern Anal. Mach. Intell., 2005, vol. 27, no. 8, pp. 1334-1339.

31. Maurer C.R., Qi R., Raghavan V. A linear time algorithm for computing exact Euclidean distance transforms of binary images in arbitrary dimensions. IEEE Trans. Pattern Anal. Mach. Intell., 2003, vol. 25, no. 2, pp. 265-270.

32. Dvilis E.S. Zakonomernosti protsessov konsolidatsii poroshkovykh sistem pri izmenenii usloviy deformatsii i fizicheskikh vozdeystvi: avtoreferat diss. dokt. fiz.-mat. nauk [Regularities of the processes of consolidation of powder systems under changing conditions of deformation and physical influences: Dr. phys. and math. sci. diss. abstract]. Tomsk, 2013. 39 p.

Full-text article (in Russian)