In vivo dosimetry at high dose rate brachytherpapy for prostate cancer using Ir-192: comparison of dose distribution between planned and measured doses with intracavi-tary placement of autonomous luminescence microdosimeters

«Radiation and Risk», 2018, vol. 27, No. 1, pp.77-85

DOI: 10.21870/0131-3878-2018-27-1-77-85

Authors

Stepanenko V.F. – Head of Lab., D. Sc., Biol., Prof. Contacts: 4 Korolyov str., Obninsk, Kaluga region, Russia, 249036. Tel. (484) 399-70-02; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. .
Biryukov V.A. – Senior Researcher, C. Sc., Med.
Kaprin A.D.1 – General Director of NMRRC, Academician of RAS, MD, Prof.
Galkin V.N. – Director, MD.
Ivanov S.A.1 – Deputy General Director, Head of Dep., MD.
Borysheva N.B. – Head of Dep., C. Sc., Phys.-Math.
Karyakin O.B. – Head of Dep., MD, Prof.
Mardinskiy Yu.S. – Main Researcher, Corresponding Member of RAS, MD, Prof.
Gulidov I.A. – Head of Dep., MD, Prof.
Kolyzhenkov T.V. – Senior Researcher, C. Sc., Biol.
Obukhov A.A. – Head of Dep., C. Sc., Med.
Ivannikov A.I. – Lead. Researcher, C. Sc., Phys.-Math.
Skvortsov V.G. – Head of Lab., C. Sc., Biol.
Akhmedova U.A. – Researcher.
Bogacheva V.V. – Researcher.
Petukhov A.D. – Researcher.
Yaskova E.K. – Lead. Researcher, C. Sc., Biol.
Khailov A.M. – Senior Researcher, C. Sc., Biol.
Lepilina O.G. – Med. Physicist; Sanin D.B. – Med. Physicist, C. Sc., Biol.
Korotkov V.A. – Acting Head of Dep., Lead. Researcher.
Anokhin Yu.N. – Lead. Researcher, C. Sc., Med. A. Tsyb MRRC.

Abstract

We present results of comparative study of the distributions between planned and measured doses with intracavitary placement of autonomous luminescence microdosimeters in the process of high-dose rate brachytherapy for prostate cancer using 192Ir. The results were obtained with the use of technology consisting in the application of autonomous luminescence microdosimeters, which were distributed in the depth in the region of the urethra and the rectal region with the purpose of verification of gradients of the calculated (planned) doses. Microdosimeters in the form of a powder of microcrystals of LiF (size about 150 μm) were hermetically packed inside a flexible tissue-equivalent tubes to ensure electronic equilibrium, and then placed inside medical catheters. Measurements of radiation-induced signals in microdosimeters were performed by the method of thermally stimulated luminescence (TL). Absorbed doses were determined using the dose calibration dependencies for microdosimeters with the use of standard sources of ionizing radiation. Medical catheters were introduced in accordance with technology for high dose rate brachytherapy. Instrumental measurement of the distribution of measured doses was performed for 30 patients. Comparison of measured doses with calculated (planned) dose data shows that in the urethra, near the tumor, the measured doses agree well with the calculated ones (differences do not exceed 5%). Meanwhile, the calculated dose in the distal (rectal) region differ significantly from the calculated ones. The improvements of such kind of “in vivo” dosimetry technology is in a process.

Key words
In vivo dosimetry, intracavitary instrumental dosimetry, brachytherapy, high dose rate brachytherapy, high dose brachytherapy, intratissue brachytherapy, 192Ir, prostate cancer, local absorbed doses, calculated doses, planned doses, distribution of absorbed doses, radiation safety of patients, luminescence detectors, LiF, thermostimulated luminescence, TL dosimetry.

References

1. Kaprin A.D., Galkin V.N., Ivanov S.A. Rol' brahiterapii v lechenii lokalizovannyh form raka predstatel'noj zhelezy [The role of brachytherapy in the treatment of localized prostate cancer]. Biomedical Photonics, 2015, vol. 4, no. 4, pp. 21-26.

2. Ivanov S.A. Brakhiterapiya kak metod radikal'nogo lecheniya pri rake predstatel'noy zhelezy. Diss. dokt. med. nauk [Brachytherapy as a method of radical treatment of prostate cancer. Dr. med. sci. diss.]. Moscow, 2011. 265 p.

3. Ivanov S.A., Kaprin A.D., Milenin K.N., Al'bickij I.A., Ivanenko K.V. Rezul'taty primeneniya nizkodoznoy brakhiterapii v kachestve radikal'nogo lecheniya pri rake predstatel'noy zhelezy [Results of application of low-dose brachytherapy as a radical treatment of prostate cancer]. Diagnosticheskaya i interventsionnaya radiologiya – Diagnostical and Interventional Radiology, 2015, vol. 5, no. 1, pp. 73-76.

4. Kaprin A.D., Pan'shin G.A., Al'bickij I.A., Milenin K.N., Cybul'skij A.D. Brakhiterapiya lokalizovannogo raka predstatel'noy zhelezy (meditsinskaya tekhnologiya [Brachytherapy of localized prostate cancer: medical technology]. Available at: http://www.rncrr.ru/nauka/new-technology/brakhiterapiya-lokalizovannogo-raka-predstatelnoy-zhelezy (Accessed 8 January 2017).

5. Brachytherapy. Eds.: Acad. RAS A.D. Kaprin, Corr. Member RAS Yu.S. Mardinskiy). Obninsk, A. Tsyb MRRC, 2017. 245 p. (In Russian).

6. WHO. Radiotherapy Risk Profile WHO/IER/PSP/2008.12. Geneva, WHO, 2008. 51 p. Available at: http://www.who.int/patientsafety/activities/technical/radiotherapy_risk_profile.pdf (Accessed 19 April 2017).

7. IAEA. Lessons learned from accidental exposures in radiotherapy. IAEA Safety Report Series 17. Vienna, IAEA, 2000. 96 p. Available at: http://www-pub.iaea.org/mtcd/publications/pdf/pub1084_web.pdf (Accessed 19 April 2017).

8. IAEA. IAEA Human Health Reports No. 8 Development of Procedures for In Vivo Dosimetry in Radiotherapy. Vienna, IAEA, 2013. 178 p. Available at: http://www-pub.iaea.org/mtcd/publications/pdf/ pub1084_web.pdf (Accessed 19 April 2017).

9. Valentin J. Prevention of high-dose-rate brachytherapy accidents. ICRP Publication 97. Annals of the ICRP, 2005, vol. 35, no. 2, pp. 1-51.

10. Therriault-Proulx F., Briere T.M., Mourtada F., Aubin S., Beddar S., Beaulieu L. A phantom study of an in vivo dosimetry system using plastic scintillation detectors for real-time verification of 192Ir HDR brachytherapy. Med. Phys., 2011, vol. 38, no. 5, pp. 2542-2551. DOI:10.1118/1.3572229.

11. Andersen C.E., Nielsen S.K., Greilich S., Helt-Hansen J., Lindegaard J.C., Tanderup K. Characterization of a fiber-coupled Al2O3:C luminescence dosimetry system for online in vivo dose verification during 192Ir brachytherapy. Med. Phys., 2009, vol. 36, no. 3, pp. 708-718. DOI:10.1118/1.3063006.

12. Stepanenko V.F., Birjukov V.A, Karjakin O.B., Kaprin A.D., Galkin V.N., Ivanov S.A., Mardynskij Ju.S., Kolyzhenkov T.V., Petuhov A.D., Bogacheva V.V., Ahmedova U.A., Jas'kova E.K., Lepilina O.G., Sanin D.B., Skvortsov V.G., Ivannikov A.I., Hajlov A.M., Anohin Ju.N. Lokal'nye pogloshchennye dozy oblucheniya meditsinskogo personala pri brakhiterapii raka predstatel'noy zhelezy mikroistochnikami 125I rossiyskogo proizvodstva [Local absorbed doses of irradiation of medical personnel at brachytherapy of prostate cancer using 125I microsources of Russian production]. Radiatsiya i risk – Radiation and Risk, 2017, vol. 26, no. 1, pp. 44-59. DOI: 10.21870/0131-3878-2017-26-1-44-59.

13. Stepanenko V.F., Biryukov V.A., Kaprin A.D., Galkin V.N., Ivanov S.A., Kariakin O.B., Mardinskiy Yu.S., Gulidov I.A., Kolyzhenkov T.V., Ivannikov A.I., Borysheva N.B., Skvortsov V.G., Akhmedova U.A., Bogacheva V.V., Petukhov A.D., Yaskova E.K., Khailov A.M., Lepilina O.G., Sanin D.B., Korotkov V.A., Obukhov A.A., Anokhin Yu.N. Vnutripolostnaya avtonomnaya «in vivo» dozimetriya pri vysoko-moshchnostnoy brakhiterapii raka predstatel'noy zhelezy c primeneniem 192Ir: razrabotka tekhnologii i pervye rezul'taty [Intracavitary offline "in vivo" dosimetry for high dose-rate prostate brachytherapy with 192Ir: development of technology and first results of its application]. Radiatsiya i Risk – Radiation and Risk, 2017, vol. 26, no. 2, pp. 72-82. DOI: 10.21870/0131-3878-2017-26-2-72-82.

14. Kaprin A.D., Galkin V.N., Zhavoronkov L.P., Ivanov V.K., Ivanov S.A., Romanko Yu.S. Sintez funda-mental'nykh i prikladnykh issledovaniy – osnova obespecheniya vysokogo urovnya nauchnykh rezul'tatov i vnedreniya ikh v meditsinskuyu praktiku [Synthesis of basic and applied research is the basis of obtaining high-quality findings and translating them into clinical practice]. Radiatsia i Risk – Radiation and Risk, 2017, vol. 2, no. 2, pp. 26-40. DOI: 10.21870/0131-3878-2017-26-2-26-40.

Full-text article (in Russian)