Breast cancer and tumor stem cells. Review

«Radiation and Risk», 2016, vol. 25, No. 4, pp.31-47

DOI: 10.21870/0131-3878-2016-25-4-31-47

Authors

Smirnova I.A. – Lead. Researcher, MD, A. Tsyb MRRC, Obninsk, Russia.
Enileeva A.A. – Researcher. A. Tsyb MRRC, Obninsk, Russia.
Matchuk O.N. – Researcher. A. Tsyb MRRC, Obninsk, Russia.
Zamulaeva I.A. – Head of Dep., D. Sc., Biol., Professor. A. Tsyb MRRC, Obninsk, Russia. Contacts: 4 Korolyov str., Obninsk, Kaluga region, Russia, 249036. Tel.: +7 (484) 399-71-88; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.

Abstract

In recent years the existence of cancer stem cells (CSCs) was demonstrated in malignant tumors of various localizations, animal and human stable tumor cell lines. Breast cancer was the first solid tumor, in which the presence of CSCs was revealed. The first evidence of the existence of CSCs was reveled in breast. Identification of breast CSCs is a complex problem because of their heterogeneity and plasticity. By this moment, a significant body of experimental data on the biological nature of breast CSCs has been accumulated. This cell fraction is characterized by a higher resistance to the action of low-LET radiation and chemotherapy compared to other tumor cells. In this review we analyze the possibility of applying the acquired knowledge about the CSC resistance to antitumor agents, molecular-cellular features of CSCs and its prognostic value in clinical practice to improve the results of treatment of patients with breast malignant tumors. Clinical data on the relationship of breast CSCs with the formation of resistance to anticancer treatment, including radiation therapy, are not yet numerous, but indicate the prospects of further work in this direction.

Key words
Breast cancer, intratumor heterogeneity, tumor stem cells, CD44, CD24, antitumor therapy, prognosis, radioresistance, ionizing radiation, chemoresistance.

References

1. Al-Hajj M., Wicha M.S., Benito-Hernandez A., Morrison S.J., Clarke M.F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci USA, 2003, vol. 100, pp. 3983-3988.

2. Nguyen L.V., Vanner R., Dirks P., Eaves C.J. Cancer stem cells: an evolving concept. Nat. Rev. Cancer, 2012, vol. 12, no. 2, pp. 133-143.

3. Wicha M.S. Cancer stem cells and metastasis: Lethal seeds. Clin. Cancer Res., 2006, vol. 12, pp. 5606- 5607.

4. Poleszczuk J., Hahnfeldt P., Enderling H. Evolution and phenotypic selection of cancer stem cells. PLoS Comput. Biol., 2015, vol. 11, no. 3, e1004025.

5. Xie X., Teknos T.N., Pan Q. Are all cancer stem cells created equal? Stem Cells Transl. Med., 2014, vol. 3, no. 10, pp. 1111-1115.

6. Mannello F. Understanding breast cancer stem cell heterogeneity: time to move on to a new research paradigm. BMC Med., 2013, vol. 11, p. 169.

7. Martinez-Climent J.A., Andreu E.J., Prosper F. Somatic stem cells and the origin of cancer. Clin. Transl. Oncol., 2006, vol. 8, pp. 647-663.

8. Mammary stem cells. Methods and protocols. Ed.: M. del Mar Vivanco. New York, Springer (Humana Press), 2015. 275 p.

9. Clarke M.F., Dick J.E., Dirks P.B., Eaves C.J., Jamieson C.H., Jones D.L., Visvader J., Weissman I.L., Wahl G.M. Cancer stem cells-perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res., 2006, vol. 66, pp. 9339-9344.

10. Wang A., Chen L., Li C., Zhu Y. Heterogeneity in cancer stem cells. Cancer Lett., 2015, vol. 357, pp. 63-68.

11. Liu S., Cong Y., Wang D., Sun Y., Deng L., Liu Y., Martin-Trevino R., Shang L., McDermott S.P., Landis M.D., Hong S., Adams A., D'Angelo R., Ginestier C., Charafe-Jauffret E., Clouthier S.G., Birnbaum D., Wong S.T., Zhan M., Chang J.C., Wicha M.S. Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Reports, 2013, vol. 2, pp. 78-91.

12. Iliopoulos D., Hirsch H.A., Wang G., Struhl K. Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc. Natl. Acad. Sci. USA, 2011, vol. 108, pp. 1397-1402.

13. Yang G., Quan Y., Wang W., Fu Q., Wu J., Mei T., Li J., Tang Y., Luo C., Ouyang Q., Chen S., Wu L., Hei T.K., Wang Y. Dynamic equilibrium between cancer stem cells and non-stem cancer cells in human SW620 and MCF-7 cancer cell populations. Br. J. Cancer, 2012, vol. 106, pp. 1512-1519.

14. Klevebring D., Rosin G., Ma R., Lindberg J., Czene K., Kere J., Fredriksson I., Bergh J., Hartman J. Sequencing of breast cancer stem cell populations indicates a dynamic conversion between differentiation states in vivo. Breast Cancer Res., 2014, vol. 16, R72.

15. Tang J., Li Y., Wang J., Wen Z., Lai M., Zhang H. Molecular mechanisms of microRNAs in regulating epithelial- mesenchymal transitions in human cancers. Cancer Lett., 2016, vol. 371, pp. 301-313.

16. Luo M., Brooks M., Wicha M.S. Epithelial-mesenchymal plasticity of breast cancer stem cells: implications for metastasis and therapeutic resistance. Curr. Pharm. Des., 2015, vol. 21, pp. 1301-1310.

17. Zhao J. Cancer stem cells and chemoresistance: The smartest survives the raid. Pharmacol. Ther., 2016, vol. 160, pp. 145-158.

18. Chuthapisith S., Eremin J., El-Sheemey M., Eremin O. Breast cancer chemoresistance: emerging importance of cancer stem cells. Surg. Oncol., 2010, vol. 19, pp. 27-32.

19. Matchuk O.N., Saenko A.S. Irradiation and chemotherapy drug effects on cancer stem cells (SP) of melanoma B16 and breast adenocarcinoma MCF-7. Radiatsija i risk – Radiation and Risk, 2013, vol. 22, no. 2, pp. 67-76. (In Russian).

20. Williams K., Motiani K., Giridhar P.V., Kasper S. CD44 integrates signaling in normal stem cell, cancer stem cell and (pre)metastatic niches. Exp. Biol. Med. (Maywood), 2013, vol. 238, pp. 324-338.

21. Gerhard R., Ricardo S., Albergaria A., Gomes M., Silva A.R., Logullo Â.F., Cameselle-Teijeiro J.F., Paredes J., Schmitt F. Immunohistochemical features of claudin-low intrinsic subtype in metaplastic breast carcinomas. Breast, 2012, vol. 21, pp. 354-360.

22. Honeth G., Bendahl P.O., Ringner M., Saal L.H., Gruvberger-Saal S.K., Lövgren K., Grabau D., Fernö M., Borg Å., Hegardt C. The CD44+/CD24- phenotype is enriched in basal-like breast tumors. Breast Cancer Res., 2008, vol. 10, R53.

23. Creighton C.J., Li X., Landis M., Dixon J.M., Neumeister V.M., Sjolund A., Rimm D.L., Wong H., Rodriguez A., Herschkowitz J.I., Fan C., Zhang X., He X., Pavlick A., Gutierrez M.C., Renshaw L., Larionov A.A., Faratian D., Hilsenbeck S.G., Perou C.M., Lewis M.T., Rosen J.M., Chang J.C. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc. Natl. Acad. Sci. USA, 2009, vol. 106, pp. 13820-13825.

24. Li X., Lewis M.T., Huang J., Gutierrez C., Osborne C.K., Wu M.-F., Hilsenbeck S.G., Pavlick A., Zhang X., Chamness G.C., Wong H., Rosen J., Chang J.C. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J. Natl. Cancer Inst., 2008, vol. 100, pp. 672-679.

25. Alamgeer M., Ganju V., Kumar B., Fox J., Hart S., White M., Harris M., Stuckey J., Prodanovic Z., Schneider-Kolsky M.E., Watkins D.N. Changes in aldehyde dehydrogenase-1 expression during neoadjuvant chemotherapy predict outcome in locally advanced breast cancer. Breast Cancer Res., 2014, vol. 16, no. 2, R44.

26. Kida K., Ishikawa T., Yamada A., Shimada K., Narui K., Sugae S., Shimizu D., Tanabe M., Sasaki T., Ichikawa Y., Endo I. Effect of ALDH1 on prognosis and chemoresistance by breast cancer subtype. Breast Cancer Res. Treat., 2016, vol. 156, no. 2, pp. 261-269.

27. Neumeister V., Agarwal S., Bordeaux J., Camp R.L., Rimm D.L. In situ identification of putative cancer stem cells by multiplexing ALDH1, CD44, and cytokeratin identifies breast cancer patients with poor prognosis. Am. J. Pathol., 2010, vol. 176, pp. 2131-2138.

28. Horwitz K.B., Dye W.W., Harrell J.C., Kabos P., Sartorius C.A. Rare steroid receptor-negative basal-like tumorigenic cells in luminal subtype human breast cancer xenografts. Proc. Natl. Acad. Sci. USA, 2008, vol. 105, pp. 5774-5779.

29. Kabos P., Haughian J.M., Wang X., Dye W., Finlayson C., Elias A., Horwitz K.B., Sartorius C.A. Cytokeratin 5 positive cells represent a steroid receptor negative and therapy resistant subpopulation in luminal breast cancers. Breast Cancer Res. Treat., 2011, vol. 128, pp. 45-55.

30. Dubrovska A. Report on the International Workshop «Cancer stem cells: The mechanisms of radioresistance and biomarker discovery». Int. J. Radiat. Biol., 2014, vol. 90, pp. 607-614.

31. Diehn M., Clarke M. Cancer stem cells and radiotherapy: new insights into tumor radioresistance. J. Natl. Cancer Inst., 2006, vol. 98, no. 24, pp. 1755-1757.

32. Rycaj K., Tang D.G. Cancer stem cells and radioresistance. Int. J. Radiat. Biol., 2014, vol. 90, no. 8, pp. 615-621.

33. Zamulaeva I.A., Matchuk O.N., Selivanova E.I., Andreev V.G., Lipunov N.M., Makarenko S.A., Zhavoronkov L.P, Saenko A.S. Uvelichenie kolichestva opuholevyh stvolovyh kletok pod vozdejstviem redkoionizirujushhego izluchenija [Increase in the number of cancer stem cells after exposure to low-LET radiation]. Radiatsionnaja biologija. Radiojekologija – Radiat. Biol. Radioecol., 2014, vol. 54, no. 3, pp. 256-264.

34. Phillips T.M., McBride W.H., Pajonk F. The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation. J. Natl. Cancer Inst., 2006, vol. 98, pp. 1777-1785.

35. Matchuk O.N., Zamulaeva I.A., Selivanova E.I., Lipunov N.M., Pronjushkina K.A., Ul'janenko S.E., Lychagin A.A., Smirnova S.G., Orlova N.V., Saenko A.S. Chuvstvitel'nost' kletok SP linii melanomy B16 k dejstviju redko- i plotnoionizirujushhego izluchenij [Increase in the number of cancer stem cells after exposure to low-LET radiation]. Radiatsionnaja biologija. Radiojekologija – Radiat. Biol. Radioecol., 2012, vol. 52, no. 3, pp. 261-267.

36. Zhang X., Lin S.H., Fang B., Gillin M., Mohan R., Chang J.Y. Therapy-resistant cancer stem cells have differing sensitivity to photon versus proton beam radiation. J. Thorac. Oncol., 2013, vol. 8, no. 12, pp. 1484- 1491.

37. Williams K.E., Bundred N.J., Landberg G., Clarke R.B., Farnie G. Focal adhesion kinase and Wnt signaling regulate human ductal carcinoma in situ stem cell activity and response to radiotherapy. Stem Cells, 2015, vol. 33, no. 2, pp. 327-341.

38. Lagadec C., Vlashi E., Delia Donna L., Meng Y., Dekmezian C., Kim K., Pajonk F. Survival and selfrenewing capacity of breast cancer initiating cells during fractionated radiation treatment. Breast Cancer Res., 2010, vol. 12, R13.

39. Qiu Y., Pu T., Guo P., Wei B., Zhang Z., Zhang H., Zhong X., Zheng H., Chen L., Bu H., Ye F. ALDH(+)/CD44(+) cells in breast cancer are associated with worse prognosis and poor clinical outcome. Exp. Mol. Pathol., 2016, vol. 100, pp. 145-150.

40. Matchuk O.N., Zamulaeva I.A., Kovalev O.A., Saenko A.S. Mehanizmy radiorezistentnosti kletok SP kul'tury myshinoj melanomy B16 [Radioresistance mechanisms of side population cells in mouse melanoma cell line B16]. Citologija – Cytology, 2013, vol. 55, no. 8, pp. 553-559.

41. Yun Z., Lin Q. Hypoxia and regulation of cancer cell stemness. Adv. Exp. Med. Biol., 2014, vol. 772, pp. 41-53.

42. Reuben J.M., Lee B.N., Gao H., Cohen E.N., Mego M., Giordano A., Wang X., Lodhi A., Krishnamurthy S., Hortobagyi G.N., Cristofanilli M., Lucci A., Woodward W.A. Primary breast cancer patients with high risk clinicopathologic features have high percentages of bone marrow epithelial cells with ALDH activity and CD44CD241o cancer stem cell phenotype. Eur. J. Cancer, 2011, vol. 47, pp. 1527-1536.

43. Visus C., Wang Y., Lozano-Leon A., Ferris R.L., Silver S., Szczepanski M.J., Brand R.E., Ferrone C.R., Whiteside T.L., Ferrone S., DeLeo A.B., Wang X. Targeting ALDHbright human carcinoma-initiating cells with ALDHlAl-specific CD8+ T Cells. Clin. Cancer Res., 2011, vol. 17, pp. 6174-6184.

Karthik G.M., Ma R., Lövrot J., Kis L.L., Lindh C., Blomquist L., Fredriksson I., Bergh J., Hartman J. mTOR inhibitors counteract tamoxifen-induced activation of breast cancer stem cells. Cancer Lett., 2015, vol. 367, no. 1, pp. 76-87.

45. Liu Y., Zhang X., Liu J., Hou G., Zhang S., Zhang J. Everolimus in combination with letrozole inhibit human breast cancer MCF-7/Aro stem cells via PI3K/mTOR pathway: an experimental study. Tumour Biol., 2014, vol. 35, no. 2, pp. 1275-1286.

46. Lai Y., Yu X., Lin X., He S. Inhibition of mTOR sensitizes breast cancer stem cells to radiation-induced repression of self-renewal through the regulation of MnSOD and Akt. Int. J. Mol. Med., 2016, vol. 37, no. 2, pp. 369-377.

47. Korkaya H., Paulson A., Charafe-Jauffret E., Ginestier C., Brown M., Dutcher J., Clouthier S.G., Wicha M.S. Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling. PLoS Biol., 2009, vol. 7, el000121.

48. Piggott L., Omidvar N., Marti-Perez S., Eberl M., Clarkson R. Suppression of apoptosis inhibitor c-FLIP selectively eliminates breast cancer stem cell activity in response to the anticancer agent, TRAIL. Breast Cancer Res., 2011, vol. 13, R88.

49. Lang J.Y., Hsu J.L., Meric-Bernstam F., Chang C.-J., Wang Q., Bao Y., Yamaguchi H., Xie X., Woodward W.A., Yu D., Hortobagyi D.N., Hung M.-C. BikDD eliminates breast cancer initialing cells and synergizes with lapatinib for breast cancer treatment. Cancer Cell, 2011, vol. 20, pp. 341-356.

50. Malhi S., Gu X. Nanocarrier-mediated drugs targeting cancer stem cells: an emerging delivery approach. Expert Opin. Drug. Deliv., 2015, vol. 12, no. 7, pp. 1177-1201.

Full-text article (in Russian)