Radiation dermatitis: modern approaches to treatment. Review

«Radiation and Risk», 2024, vol. 33, No. 3, pp.80-97

DOI: 10.21870/0131-3878-2024-33-3-80-97

Authors

Popova N.R. – Lead. Researcher, C. Sc., Biol.
Sorokina S.S. – Sen. Researcher, C. Sc., Biol. ITEB RAS. Contacts: 3 Institutskaya str, Pushchino, Moscow region, Russia, 142290. Tel.: +7(4967) 73-94-31; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. .
Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Pushchino

Abstract

It is now well established that radiation-induced dermatitis is a complication in 85-95% of patients undergoing standard radiotherapy. Despite the fact that the pathogenesis of radiation dermatitis has been quite well studied, the factors influencing the severity of its course have been established, and its distinctive features compared to thermal and chemical burns have been demonstrated, the pre-vention and treatment of radiation dermatitis remains an unsolved problem, leading to a decrease in the quality of life of patients and various long-term complications. Today, hygienic procedures are recommended as preventive measures in clinical medicine, namely: daily keeping the skin clean, applying moisturizer, wearing clothes made of soft fabrics, avoiding temperature changes, and pro-tecting from direct sunlight. In addition, a number of products are used to treat other forms of skin lesions – moisturizing and anti-inflammatory ointments and dressings. These procedures help to partially improve the patient’s quality of life; however, they do not have a therapeutic effect on the primary cellular and molecular causes of the development of radiation dermatitis. Currently, there are several potentially more effective treatment methods, such as targeted gene and cell therapy, bioactivators, a number of physical methods and nanocomposites. In our work, we considered modern achievements in the field of treatment of radiation dermatitis, paying special attention to the prospects for the use of nanobiotechnological drugs in connection with their extensive research for science and medicine.

Key words
radiation dermatitis, fibrosis, inflammation, chronic oxidative stress, topical agents, physical therapy, bioactivators, targeted gene therapy, cell therapy, nanocomposites, radiology.

References

1. Maddocks-Jennings W., Wilkinson J.M., Shillington D. Novel approaches to radiotherapy-induced skin reactions: a literature review. Complement. Ther. Clin. Pract., 2005, vol. 11, no. 4, pp. 224-231.

2. Salvo N., Barnes E., van Draanen J., Stacey E., Mitera G., Breen D., Giotis A., Czarnota G., Pang J., De Angelis C. Prophylaxis and management of acute radiation-induced skin reactions: a systematic review of the literature. Curr. Oncol., 2010, vol. 17, no. 4, pp. 94-112.

3. Ryan J.L. Ionizing radiation: the good, the bad, and the ugly. J. Invest. Dermatol., 2012, vol. 132 (3 Pt 2), pp. 985-993.

4. Singh M., Alavi A., Wong R., Akita S. Radiodermatitis: a review of our current understanding. Am. J. Clin. Dermatol., 2016, vol. 17, no. 3, pp. 277-292.

5. Zhang Y., Zhang S., Shao X. Topical agent therapy for prevention and treatment of radiodermatitis: a meta-analysis. Support. Care Cancer, 2013, vol. 21, no. 4, pp. 1025-1031.

6. McQuestion M. Evidence-based skin care management in radiation therapy. Semin. Oncol. Nurs., 2006, vol. 22, no. 3, pp. 163-173.

7. Wolbarst A.B., Wiley A.L.Jr., Nemhauser J.B., Christensen D.M., Hendee W.R. Medical response to a major radiologic emergency: a primer for medical and public health practitioners. Radiology, 2010, vol. 254, no. 3, pp. 660-677.

8. Bey E., Prat M., Duhamel P., Benderitter M., Brachet M., Trompier F., Battaglini P., Ernou I., Boutin .L, Gourven M., Tissedre F., Créa S., Mansour C.A., de Revel T., Carsin H., Gourmelon P., Lataillade J.J. Emerging therapy for improving wound repair of severe radiation burns using local bone marrow-derived stem cell administrations. Wound Rep. Reg., 2010, vol. 18, no. 1, pp. 50-58.

9. Siegel R., Desantis C., Virgo K., Stein K., Mariotto A., Smith T., Cooper D., Gansler T., Lerro C., Fedewa S., Lin C., Leach C., Cannady R.S., Cho H., Scoppa S., Hachey M., Kirch R., Jemal A., Ward E. Cancer treatment and survivorship statistics. CA Cancer J. Clin., 2012, vol. 62, no. 4, pp. 220-241.

10. Williams J.P., McBride W.H. After the bomb drops: a new look at radiation-induced multiple organ dysfunction syndrome (MODS). Int. J. Radiat. Biol., 2011, vol. 87, no. 8, pp. 851-868.

11. Holler V., Buard V., Gaugler M.H., Guipaud O., Baudelin C., Sache A., Perez Mdel R., Squiban C., Tama-rat R., Milliat F., Benderitter M. Pravastatin limits radiation-induced vascular dysfunction in the skin. J. Invest. Dermatol., 2009, vol. 129, no. 5, pp. 1280-1291.

12. Kim J.H., Kolozsvary A.J.J., Jenrow K.A., Brown S.L. Mechanisms of radiation-induced skin injury and implications for future clinical trials. Int. J. Radiat. Biol., 2013, vol. 89, no. 5, pp. 311-318.

13. Denham J.W., Hauer-Jensen M. The radiotherapeutic injury – a complex “wound”. Radiother. Oncol., 2002, vol. 63, no. 3, pp. 129-145.

14. Amber K.T., Shiman M.I., Badiavas E.V. The use of antioxidants in radiotherapy-induced skin toxicity. Integr. Cancer Ther., 2014, vol. 13, no. 1, pp. 38-45.

15. Spałek M. Chronic radiation-induced dermatitis: challenges and solutions. Clin. Cosmet. Investig. Dermatol., 2016, vol. 9, pp. 473-482.

16. Leventhal J., Young M.R. Radiation dermatitis: recognition, prevention, and management. Oncology (Williston Park), 2017, vol. 31, no. 12, pp. 885-899.

17. Cox J.D., Stetz J., Pajak T.F. Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC). Int. J. Radiat. Oncol. Biol. Phys., 1995, vol. 31, no. 5, pp. 1341-1346.

18. Shukla P.N., Gairola M., Mohanti B.K., Rath G.K. Prophylactic beclomethasone spray to the skin during postoperative radiotherapy of carcinoma breast: a prospective randomized study. Indian J. Cancer, 2006, vol. 43, no. 4, pp. 180-184.

19. Quimby A.E., Hogan D., Khalil D., Hearn M., Nault C., Johnson-Obaseki S. Coconut oil as a novel approach to managing radiation-induced xerostomia: a primary feasibility study. Int. J. Otolaryngol., 2020, vol. 2020, pp. 8537643. DOI: 10.1155/2020/8537643.

20. Liguori V., Guillemin C., Pesce G.F., Mirimanoff R.O., Bernier J. Double-blind, randomized clinical study comparing hyaluronic acid cream to placebo in patients treated with radiotherapy. Radiother. Oncol., 1997, vol. 42, no. 2, pp. 155-161.

21. Wells M., Macmillan M., Raab G., MacBride S., Bell N., MacKinnon K., MacDougall H., Samuel L., Munro A. Does aqueous or sucralfate cream affect the severity of erythematous radiation skin reactions? A randomised controlled trial. Radiother. Oncol., 2004, vol. 73, no. 2, pp. 153-162.

22. Geara F.B., Eid T., Zouain N., Thebian R., Andraos T., Chehab C., Ramia P., Youssef B., Zeidan Y.H. Randomized, prospective, open-label phase III trial comparing Mebo ointment with Biafine cream for the man-agement of acute dermatitis during radiotherapy for breast cancer. Am. J. Clin. Oncol., 2018, vol. 41, no. 12, pp. 1257-1262.

23. Shin S., Jang B.H., Suh H.S., Park S.H., Lee J.W., Yoon S.W., Kong M., Lim Y.J., Hwang D.S. Effective-ness, safety, and economic evaluation of topical application of a herbal ointment, Jaungo, for radiation der-matitis after breast conserving surgery in patients with breast cancer (GREEN study): study protocol for a randomized controlled trial. Medicine (Baltimore), 2019, vol. 98, no. 15, pp. e15174. DOI: 10.1097/MD.0000000000015174.

24. Schmuth M., Wimmer M.A., Hofer S., Sztankay A., Weinlich G., Linder D.M., Elias P.M., Fritsch P.O., Fritsch E. Topical corticosteroid therapy for acute radiation dermatitis: a prospective, randomized, double-blind study. Br. J. Dermatol., 2002, vol. 146, no. 6, pp. 983-991.

25. Miller R.C., Schwartz D.J., Sloan J.A., Griffin P.C., Deming R.L., Anders J.C., Stoffel T.J., Haselow R.E., Schaefer P.L., Bearden J.D3rd, Atherton P.J., Loprinzi C.L., Martenson J.A. Mometasone furoate effect on acute skin toxicity in breast cancer patients receiving radiotherapy: a phase III double-blind, randomized trial from the North Central Cancer Treatment Group N06C4. Int. J. Radiat. Oncol. Biol. Phys., 2011, vol. 79, no. 5, pp. 1460-1466.

26. Hemati S., Asnaashari O., Sarvizadeh M., Motlagh B.N., Akbari M., Tajvidi M., Gookizadeh A. Topical silver sulfadiazine for the prevention of acute dermatitis during irradiation for breast cancer. Support. Care Cancer, 2012, vol. 20, no. 8, pp. 1613-1618.

27. Rosenthal A., Israilevich R., Moy R. Management of acute radiation dermatitis: A review of the literature and proposal for treatment algorithm. J. Am. Acad. Dermatol., 2019, vol. 81, no. 2, pp. 558-567.

28. Diggelmann K.V., Zytkovicz A.E., Tuaine J.M., Bennett N.C., Kelly L.E., Herst P.M. Mepilex Lite dressings for the management of radiation-induced erythema: a systematic inpatient controlled clinical trial. Br. J. Radiol., 2010, vol. 83, no. 995, pp. 971-978.

29. Espenel S., Raffoux C., Vallard A., Garcia M.A., Guy J.B., Rancoule C., Ben Mrad M., Langrand-Escure J., Trone J.C., Pigne G., Diao P., Magné N. Hyperbaric oxygen and radiotherapy: аrom myth to reality. Cancer Radiother., 2016, vol. 20, no. 5, pp. 416-421.

30. Borab Z., Mirmanesh M.D., Gantz M., Cusano A., Pu L.L. Systematic review of hyperbaric oxygen therapy for the treatment of radiation-induced skin necrosis. J. Plast. Reconstr. Aesthet. Surg., 2017, vol. 70, no. 4, pp. 529-538.

31. Hampson N.B., Holm J.R., Wreford-Brown C.E., Feldmeier J. Prospective assessment of outcomes in 411 patients treated with hyperbaric oxygen for chronic radiation tissue injury. Cancer, 2012, vol. 118, no. 15, pp. 3860-3868.

32. Tahir A.R., Westhuyzen J., Dass J., Collins M.K., Webb R., Hewitt S., Fon P., McKay M. Hyperbaric oxy-gen therapy for chronic radiation-induced tissue injuries: Australasia's largest study. Asia Pac. J. Clin. Oncol., 2015, vol. 11, no. 1, pp. 68-77.

33. Liu C., Cui J., Sun Q., Cai J. Hydrogen therapy may be an effective and specific novel treatment for acute radiation syndrome. Med. Hypotheses, 2010, vol. 74, no. 1, pp. 145-146.

34. Watanabe S., Fujita M., Ishihara M., Tachibana S., Yamamoto Y., Kaji T., Kawauchi T., Kanatani Y. Pro-tective effect of inhalation of hydrogen gas on radiation-induced dermatitis and skin injury in rats. J. Radiat. Res., 2014, vol. 55, no. 6, pp. 1107-1113.

35. Barros N.M., Sbroglio L.L., Buffara M.O., Baka J.L., Pessoa A.S., Azulay-Abulafia L. Phototherapy. An. Bras. Dermatol., 2021, vol. 96, no. 4, pp. 397-407.

36. Rathod D.G., Muneer H., Masood S. Phototherapy. StatPearls [Internet]. Treasure Island, StatPearls Publ., 2022. 86 p.

37. Rácz E., Prens E.P. Phototherapy of psoriasis, a chronic inflammatory skin disease. Adv. Exp. Med Biol., 2017, vol. 996, pp. 287-294.

38. Persina I.S., Rakcheev A.P. Effect of helium-neon laser radiation on the morphology of experimental allergic contact dermatitis. Biulleten eksperimentalnoy biologii i meditsyny – Bulletin of Experimental Biology and Medicine, 1984, vol. 97, no. 5, pp. 603-605. (In Russian).

39. Sakihama H. Effect of a helium-neon laser on cutaneous inflammation. Kurume Med J. 1995, vol. 42, no. 4, pp. 299-305.

40. Kara N., Selamet H., Benkli Y.A., Beldüz M., Gökmenoğlu C., Kara C. Laser therapy induces increased viability and proliferation in isolated fibroblast cells. Wounds, 2020, vol. 32, no. 3, pp. 69-73.

41. Eissa M., Salih W.H. The influence of low-intensity He-Ne laser on the wound healing in diabetic rats. Lasers Med. Sci., 2017, vol. 32, no. 6, pp. 1261-1267.

42. Lee J., Jang H., Park S., Myung H., Kim K., Kim H., Jang W.S., Lee S.J., Myung J.K., Shim S. Platelet-rich plasma activates AKT signaling to promote wound healing in a mouse model of radiation-induced skin injury. J. Transl. Med., 2019, vol. 17, no. 1, pp. 295-305.

43. Miller E.D., Song F., Smith J.D., Ayan A.S., Mo X., Weldon M., Lu L., Campbell P.G., Bhatt A.D., Chakravarti A., Jacob N.K. Plasma-based biomaterials for the treatment of cutaneous radiation injury. Wound Rep. Reg., 2019, vol. 27, no. 2, pp. 139-149.

44. Gerber S.A., Cummings R.J., Judge J.L., Barlow M.L., Nanduri J., Johnson D.E.M., Palis J., Pentland A.P., Lord E.M., Ryan J.L. Interleukin-12 preserves the cutaneous physical and immunological barrier after radiation exposure. Radiat. Res., 2015, vol. 183, no. 1, pp. 72-81.

45. Liao W., Hei T.K., Cheng S.K. Radiation-induced dermatitis is mediated by IL17-expressing  T cells. Radiat. Res., 2017, vol. 187, no. 4, pp. 454-464.

46. Kurow O., Frey B., Schuster L., Schmitt V., Adam S., Hahn M., Gilchrist D., McInnes I.B., Wirtz S., Gaipl U.S., Krönke G., Schett G., Frey S., Hueber A.J. Full length interleukin 33 aggravates radiation-induced skin reaction. Front. Immunol., 2017, vol. 8, pp. 722. DOI: 10.3389/fimmu.2017.00722.

47. Yücel S., Şahin B., Güral Z., Olgaç V., Aksu G., Ağaoğlu F., Sağlam E., Aslay I., Darendeliler E. Impact of superoxide dismutase-gliadin on radiation-induced fibrosis: an experimental study. In Vivo, 2016, vol. 30, no. 4, pp. 451-456.

48. Manzanas G.A., López C.M.C., Vallejo O.C., Samper Ots P., Delgado P.J.M., Carretero A.E., Gómez-Serranillos P., de la Morena del Valle L. Superoxidase dismutase (SOD) topical use in oncologic patients: treatment of acute cutaneous toxicity secondary to radiotherapy. Clin. Transl. Oncol., 2008, vol. 10, no. 3, pp. 163-167.

49. Doctrow S.R., Lopez A., Schock A.M., Duncan N.E., Jourdan M.M., Olasz E.B., Moulder J.E., Fish B.L., Mäder M., Lazar J., Lazarova Z. A synthetic superoxide dismutase/catalase mimetic EUK-207 mitigates radiation dermatitis and promotes wound healing in irradiated rat skin. J. Invest. Dermatol., 2013, vol. 133, no. 4, pp. 1088-1096.

50. Dunst J., Semlin S., Pigorsch S., Müller A.C., Reese T. Intermittent use of amifostine during postoperative radiochemotherapy and acute toxicity in rectal cancer patients. Strahlenther Onkol., 2000, vol. 176, no. 9, pp. 416-421.

51. Dale P.S., Tamhankar C.P., George D., Daftary G.V. Co-medication with hydrolytic enzymes in radiation therapy of uterine cervix: evidence of the reduction of acute side effects. Cancer Chemother. Pharmacol., 2001, vol. 47 (Suppl), pp. S29-S34.

52. Ryan J.L., Heckler C.E., Ling M., Katz A., Williams J.P., Pentland A.P., Morrow G.R. Curcumin for radia-tion dermatitis: a randomized, double-blind, placebo-controlled clinical trial of thirty breast cancer patients. Radiat Res., 2013, vol. 180, no. 1, pp. 34-43.

53. Qin P., Li X., Yang H., Wang Z.Y., Lu D. Therapeutic potential and biological applications of cordycepin and metabolic mechanisms in cordycepin-producing fungi. Molecules, 2019, vol. 24, no. 12, pp. 2231. DOI: 10.3390/molecules24122231.

54. Anscher M.S. Targeting the TGF-β1 pathway to prevent normal tissue injury after cancer therapy. Oncologist, 2010, vol. 15, no. 4, pp. 350-359.

55. Burdelya L.G., Krivokrysenko V.I., Tallant T.C., Strom E., Gleiberman A.S., Gupta D., Kurnasov O.V., Fort F.L., Osterman A.L., Didonato J.A., Feinstein E., Gudkov A.V. An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models. Science, 2008, vol. 320, no. 5873, pp. 226-230.

56. Gudkov A.V., Komarova E.A. Radioprotection: smart games with death. J. Clin. Invest., 2010, vol. 120, no. 7, pp. 2270-2273.

57. Atiba A., Abdo W., Ali E., Abd-Elsalam M., Amer M., Monsef A.A., Taha R., Antar S., Mahmoud A. Topical and oral applications of Aloe vera improve healing of deep second-degree burns in rats via modulation of growth factors. Biomarkers, 2022, vol. 27, no. 6, pp. 608-617.

58. Akita S. Treatment of radiation injury. Adv. Wound Care (New Rochelle), 2014, vol. 3, no. 1, pp. 1-11.

59. Xiao Y., Mo W., Jia H., Yu D., Qiu Y., Jiao Y., Zhu W., Koide H., Cao J., Zhang S. Ionizing radiation induces cutaneous lipid remolding and skin adipocytes confer protection against radiation-induced skin injury. J. Dermatol. Sci., 2020, vol. 97, no. 2, pp. 152-160.

60. Akita S., Yoshimoto H., Ohtsuru A., Hirano A., Yamashita S. Autologous adipose-derived regenerative cells are effective for chronic intractable radiation injuries. Radiat. Prot. Dosimetry, 2012, vol. 151, no. 4, pp. 656-660.

61. Brunchukov V., Astrelina T., Usupzhanova D., Rastorgueva A., Kobzeva I., Nikitina V., Lishchuk S., Dubova E., Pavlov K., Brumberg V., Benderitter M., Samoylov A. Evaluation of the effectiveness of mes-enchymal stem cells of the placenta and their conditioned medium in local radiation injuries. Cells, 2020, vol. 9, no. 12, pp. 2558. DOI: 10.3390/cells9122558.

62. Popov A.L., Shcherbakov A.B., Zholobak N.M., Baranchikov A.Ye., Ivanov V.K. Cerium dioxide nanoparti-cles as third-generation enzymes (Nanozymes). Nanosyst.: Phys. Chem. Math., 2017, vol. 8, no. 6, pp. 760-781.

63. Caputo F., Giovannetti A., Corsi F., Maresca V., Briganti S., Licoccia S., Traversa E., Ghibelli L. Cerium oxide nanoparticles re-establish cell integrity checkpoints and apoptosis competence in irradiated HaCat cells via novel redox-independent activity. Front. Pharmacol., 2018, vol. 9, pp. 1183. DOI: 10.3389/fphar.2018.01183.

64. Madero-Visbal R.A., Alvarado B.E., Colon J.F., Baker C.H., Wason M.S., Isley B., Seal S., Lee C.M., Das S., Mañon R. Harnessing nanoparticles to improve toxicity after head and neck radiation. Nanomedicine, 2012, vol. 8, no. 7, pp. 1223-1231.

65. Popova N.R., Andreeva V.V., Khohlov N.V., Popov A.L., Ivanov V.K. Fabrication of CeO2 nanoparticles embedded in polysaccharide hydrogel and their application in skin wound healing. Nanosyst.: Phys. Chem. Math., 2020, vol. 11, no. 1, pp. 99-109.

66. Talakesh T., Tabatabaee N., Atoof F., Aliasgharzadeh A., Sarvizade M., Farhood B., Najafi M. Effect of nano-curcumin on radiotherapy-induced skin reaction in breast cancer patients: a randomized, triple-blind, placebo-controlled trial. Curr. Radiopharm., 2022, vol. 15, no. 4, pp. 332-340.

67. Yu D., Li S., Wang S., Li X., Zhu M., Huang S., Sun L., Zhang Y., Liu Y., Wang S. Development and characterization of VEGF165-chitosan nanoparticles for the treatment of radiation-induced skin injury in rats. Mar. Drugs, 2016, vol. 14, no. 10, pp. 182. DOI: 10.3390/md14100182.

68. Schmidt F.M.Q., González C.V.S., Mattar R.C., Lopes L.B., Dos Santos M.F., de Gouveia Santos V.L.C. Topical cream containing nanoparticles with vitamin E to prevent radiodermatitis in women with breast cancer: a clinical trial protocol. J. Wound Care, 2021, V. 30, no. 6, pp. S44-S50.

69. Meephansan J., Rungjang A., Yingmema W., Deenonpoe R, Ponnikorn S. Effect of astaxanthin on cuta-neous wound healing. Clin. Cosmet. Investig. Dermatol., 2017, vol. 10, pp. 259-265.

70. Tavakoli S., Mokhtari H., Kharaziha M., Kermanpur A., Talebi A., Moshtaghian J. A multifunctional nano-composite spray dressing of Kappa-carrageenan-polydopamine modified ZnO/L-glutamic acid for diabetic wounds. Mater. Sci. Eng C. Mater. Biol. Appl., 2020, vol. 111, pp. 110837. DOI: 10.1016/j.msec.2020.110837.

Full-text article (in Russian)