Actual problems of nuclear medicine in pediatrics (review)

«Radiation and Risk», 2021, vol. 30, No. 4, pp.69-84

DOI: 10.21870/0131-3878-2021-30-4-69-84

Authors

Krylov A.S. – Head of Lab., C. Sc. Med.
Narkevich B.Ya. – Scientific Adviser, D. Sc. Tech., Prof., AMPR President. Contacts: 24 Kashirskoe sh., Moscow, Russia, 115478. Tel.: +7(903) 976-42-26; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. .
Ryzhkov A.D. – Leading Researcher, MD. N.N. Blokhin NMRCO.
1 N.N. Blokhin NMRCO, Moscow
2 Association of Medical Physicists of Russia (AMPR), Moscow

Abstract

On the basis of literature data and personal experience, the current state and prospects for the development of nuclear medicine in pediatrics are analyzed. The main directions of radionuclide diagnostics and radionuclide therapy in children are briefly considered. The importance of accurate determination of the optimal value of the activity of a specific radiopharmaceutical administered to a child, taking into account his body weight and the study protocol, was noted. A tendency for an increase in the radiation load on patients is shown due to the widespread introduction into clinical practice of hybrid installations for radionuclide studies, when using which the dose of internal radiation from radiopharmaceuticals is supplemented by the dose of external radiation from X-ray CT. The need to take into account the risk of radiation-induced carcinogenesis in nuclear medical procedures, the probability of which in children is significantly higher than in adults, is emphasized. The technological and psychological features of these procedures in children are discussed. The necessity of substantial revision of domestic normative documents regulating the use of means and methods of nuclear medicine in pediatrics has been substantiated.

Key words
nuclear medicine, SPECT, PET, children, radiopharmaceuticals, injected activity, radiation exposure, radiation risk, urgent problems.

References

1. ICRP, 2007. Radiation protection in medicine. ICRP Publication 105. Ann. ICRP, 2007, vol. 37, no. 6, pp. 1-66.

2. Radiation protection and safety in medical uses of ionizing radiation. IAEA Safety Standards Series No. SSG-46. Vienna, IAEA, 2018. 340 p.

3. Radiation safety standards (NRB-99/2009). Sanitary rules and regulations. SanPiN 2.6.1.2523-09. Moscow, Federal Center for Hygiene and Epidemiology of Rospotrebnadzor, 2009. 100 p. (In Russian).

4. Basic sanitary rules for ensuring radiation safety (OSPORB-99/2010). Sanitary rules and regulations. SP 2.6.1.2612-10. Moscow, Federal Center for Hygiene and Epidemiology of Rospotrebnadzor, 2010. 83 p. (In Russian).

5. Fahey F.H., Bom H.H.-S., Chiti A., Choi Y.Y., Huang G., Lassmann M., Laurin N., Mut F., Nuñez-Miller R., O'Keeffe D., Pradhan P., Scott A.M., Song S., Soni N., Uchiyama M., Vargas L. Standardization of administered activities in pediatric nuclear medicine: a report of the first nuclear medicine global initiative project. Part 1 – statement of the Issue and a review of available resources. J. Nucl. Med., 2015, vol. 56, no. 4, pp. 646-651.

6. Fahey F.H., Bom H.H.-S., Chiti A., Choi Y.Y., Huang G., Lassmann M., Laurin N., Mut F., Nuñez-Miller R., O’Keeffe D., Pradhan P., Scott A.M., Song S., Soni N., Uchiyama M., Vargas L. Standardization of administered activities in pediatric nuclear medicine: a report of the first nuclear medicine global Initiative project. Part 2 – current standards and the path toward global standardization. J. Nucl. Med., 2016, vol. 57, no. 7, pp. 1148-1157.

7. Ayres K.L., Spottswood S.E., Delbeke D., Price R., Hodges P.K., Wang L., Martin W.H. Dose optimization of the administered activity in pediatric bone scintigraphy: validation of the North American Consensus Guide-lines. J. Nucl. Med., 2015, vol. 56, no. 9, pp. 1391-1394.

8. Narkevich B.Ya., Ryzhkov A.D., Komanovskaya D.A., Bilik M.E., Krylov A.S., Ryzhov S.A. Estimation of radiation risks in SPECT/CT of skelet bones. Meditsinskaya fizika – Medical Physics, 2019, vol. 83, no. 3, pp. 66-74. (In Russian).

9. Schmidt M., Baum R.P., Simon T., Howman-Giles R. Therapeutic nuclear medicine in pediatric malignancy. Q. J. Nucl. Med. Mol. Imaging, 2010, vol. 54, no. 4, pp. 411-428.

10. Kwatra N. Nuclear Medicine Therapy in Pediatric Oncology. SPR Postgraduate Course April 28, 2015. Available at: https://www.pedrad.org/LinkClick.aspx?fileticket=nNgGqxxMCKA%3D&portalid=5 (Accessed 13.10.2021).

11. Sharp S.E., Trout A.T., Weiss B.D., Gelfand M.J. MIBG in neuroblastoma diagnostic imaging and therapy. Radiographics, 2016, vol. 36, no. 1, pp. 258-278.

12. Gains J.E., Bomanji J.B., Fersht N.L., Sullivan T., D'Souza D., Sullivan K.P., Aldridge M., Waddington W., Gaze M.N. 177Lu-DOTATATE molecular radiotherapy for childhood neuroblastoma. J. Nucl. Med., 2011, vol. 52, no. 7, pp. 1041-1047.

13. Pizzoferro M., Cassano B., Altini C., Cacchione A., Cefalo M.G., Cannatà V., Garganese M.C. Imaging post-177Lu-peptide receptor radionuclide therapy in a child with advanced progressive somatostatin-receptor-positive medulloblastoma. Eur. J. Nucl. Med. Mol. Imaging, 2021, vol. 48, no. 3, pp. 937-939. DOI: 10.1007/s00259-020-04966-w.

14. Xu L., Liu Q., Liu Y., Pang H. Parameters influencing curative effect of 131I therapy on pediatric differentiated thyroid carcinoma: a retrospective study. Med. Sci. Monit., 2016, vol. 22, pp. 3079-3085.

15. ICRP, 2017. Diagnostic reference levels in medical imaging. ICRP Publication 135. Ann. ICRP, 2017, vol. 46, no. 1, pp. 1-144.

16. Applying radiation safety standards in nuclear medicine. Safety Reports Series No. 40. IAEA, Vienna, 2005. 124 p.

17. MU 2.6.1.3151-13. Evaluation and accounting of effective doses in patients during radionuclide diagnostic studies. Guidelines. Moscow, Federal Center for Hygiene and Epidemiology of Rospotrebnadzor, 2014. 36 p. (In Russian).

18. MU 2.6.1.1798-03. The estimation and control of effective doses in the course of radionuclide diagnostic investigation. Guidelines. Moscow, Federal Center for State Sanitary and Epidemiological Supervision of the Ministry of Health of Russia, 2004. 27 p. (In Russian).

19. Treves S.T., Parisi M.T., Gelfand M.J. Pediatric radiopharmaceutical doses: new guidelines. Radiology, 2011, vol. 261, no. 2, pp. 347-349.

20. Lassmann M., Biassoni M., Monsieurs M., Franzius C., Jacobs F. The new EANM paediatric dosage card. Eur. J. Nucl. Med. Mol. Imaging, 2007, vol. 34, no. 5, pp. 796-798.

21. Koizumi K., Masaki H., Matsuda H., Uchiyama M., Okuno M., Oguma E., Onuma H., Kanegawa K., Kanaya Sh., Kamiyama H., Karasawa K., Kitamura M., Kida T., Kono T., Kondo Ch., Sasaki M., Terada H., Nakanishi A., Hashimoto T., Hiroshi Hataya, Hamano S.-i., Hirono K., Fujita Yu., Hoshino K., Yano M., Watanabe S. Japanese consensus guidelines for pediatric nuclear medicine. Part 1: Pediatric radiophar-maceutical administered doses (JSNM pediatric dosage card). Part 2: Technical considerations for pediatric nuclear medicine imaging procedures. Ann. Nucl. Med., 2014, vol. 28, no. 5, pp. 498-503.

22. Lassmann M., Treves S.T. Paediatric radiopharmaceutical administration: harmonization of the 2007 EANM paediatric dosage card (version 1.5.2008) and the 2010 North American consensus guidelines. Eur. J. Nucl. Med. Mol. Imaging, 2014, vol. 41, no. 5, pp. 1036-1041.

23. Dosage calculator. Available at: https://www.eanm.org/publications/dosage-calculator/ (Accessed 18.09.2020).

24. Pediatric injected activity tool. Version: 1.04; 13-Nov-2016 Available at: http://www.snmmi.org/clinicalprac-tice/pediatrictool.aspx (Accessed 13.10.2021).

25. Cimini A., Ricci M., Chiaravalloti A., Filippi L., Schillaci O. Theragnostic aspects and radioimmunotherapy in pediatric tumors. Int. J. Mol. Sci., 2020, vol. 21, no. 11, p. 3849.

26. Lysak S.E., Klimanov V.A., Narkevich B.Ya. Quantitative scintigraphy to control doses of internal exposure to pathological foci during radionuclide therapy. Meditsinskaya fizika – Medical Physics, 2016, vol. 72, no. 4, pp. 63-71. (In Russian).

27. Lysak S.E., Goncharov M.O., Narkevich B.Ya., Shiryaev S.V. Application of the Monte Carlo method to improve the accuracy of dosimetric planning of radionuclide therapy. Meditsinskaya radiologiya i radiatsion-naya bezopasnost' – Medical Radiology and Radiation Safety, 2017, vol. 62, no. 1, pp. 49-55. (In Russian).

28. ICRP, 1987. Radiation dose to patients from radiopharmaceuticals. ICRP Publication 53. Ann. ICRP, 1987, vol. 18, no. 1-4, pp. 1-377.

29. ICRP, 1998. Radiation dose to patients from radiopharmaceuticals. Addendum to ICRP 53. ICRP Publication 80. Ann. ICRP, 1998, vol. 28, no. 3, pp. 1-126.

30. ICRP, 2008. Radiation dose to patients from radiopharmaceuticals. Addendum 3 to ICRP Publication 53. ICRP Publication 106. Ann. ICRP, 2008, vol. 38, no. 1-2, pp. 1-197.

31. ICRP, 2015. Radiation dose to patients from radiopharmaceuticals. A compendium of current information re-lated to frequently used substances. ICRP Publication 128. Ann. ICRP, 2015, vol. 44, no. 2S, pp. 1-321.

32. ICRP, 2009. Adult reference computational phantoms. ICRP Publication 110. Ann. ICRP, 2009, vol. 39, no. 2, pp. 1-165.

33. Chawla S.C., Federman N., Zhang D., Nagata K., Nuthakki S., McNitt-Gray M., Boechat M.I. Estimated cumulative radiation dose from PET/CT in children with malignancies: a 5-year retrospective review. Pediatr. Radiol., 2010, vol. 40, no. 5, pp. 681-686.

34. Vassileva J., Rehani M. Patient grouping for dose surveys and establishment of diagnostic reference levels in paediatric computed tomography. Radiat. Prot. Dosim., 2015, vol. 165, no. 1-4, pp. 81-85.

35. Radiation Protection N 185. European guidelines on diagnostic reference levels for paediatric imaging. Luxembourg, 2018. Available at: https://www.google.ru/url?sa=t&rct=j&q=&esrc=s&source=web&cd= &ved=2ahUKEwiruoXI3_rrAhWllYsKHUVCC6gQFjADegQIAxAB&url=https%3A%2F%2Fwww.kinder-radiol-ogie.org%2Fmedia%2Fdocument%2F19202%2FRP-185-Ped-DRLs.pdf&usg=AOvVaw1VnuPn3c Oq9KS_RkACXXy9 (Accessed 13.10.2021).

36. Pearce M.S., Salotti J.A., Little M.P., McHugh K., Lee Ch., Kim K.P., Howe N.L., Ronckers C.M., Rajara-man P.,Craft A.W., Parker L., de González A.B. Radiation exposure from CT scans in childhood and subse-quent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet, 2012, vol. 380, no. 9840, pp. 499-505.

37. Communicating radiation risks in pediatric imaging: Information to support health care discussions about ben-efit and risk. WHO, 2016. Available at: https://apps.who.int/iris/handle/10665/205033 (Accessed 13.10.2021).

38. ICRP, 2019. Radiological protection in therapy with radiopharmaceuticals. ICRP Publication 140. Ann. ICRP, 2019, vol. 48, no. 1, pp. 1-102.

39. Risk Calculator. Available at: https://www.xrayrisk.com/calculator/select_study.php?id=35 (Accessed 13.10.2021).

40. MR 2.6.1.0098-15. Assessment of radiation risk in patients during X-ray studies. Guidelines. Moscow, Federal Center for Hygiene and Epidemiology of Rospotrebnadzor, 2015. 42 p. (In Russian).

41. Alessio A.M., Kinahan P.E., Manchanda V., Ghioni V., Aldape L., Parisi M.T. Weight-based, low-dose pediatric whole-body PET/CT protocols. J. Nucl. Med., 2009, vol. 50, no. 10, pp. 1570-1578.

42. Huang B., Wai-Ming M., Khong P.-L. Whole-body PET/CT scanning: estimation of radiation dose and cancer risk. Radiology, 2009, vol. 251, no. 1, pp. 166-174.

43. Iyer N.G., Morris L.G.T., Tuttle R.M., Shaha A.R., Ganly I. Rising incidence of second cancers in patients with low-risk (T1N0) thyroid cancer who receive radioactive iodine therapy. Cancer, 2011, vol. 117, no. 19, pp. 4439-4446.

44. Hieu T.T., Russell A.W., Cuneo R., Clark J., Kron T., Hall P., Doi S.A.R. Cancer risk after medical exposure to radioactive iodine in benign thyroid diseases: a meta-analysis. Endocr. Relat. Cancer, 2012, vol. 19, no. 5, pp. 645-655.

45. Fisher D.R., Fahey F.H. Appropriate use of effective dose in radiation protection and risk assessment. Health Phys., 2017, vol. 113, no. 2, pp. 102-109.

46. Martin C.J. Effective dose: practice, purpose and pitfalls for nuclear medicine. J. Radiol. Prot., 2011, vol. 31, no. 2, pp. 205-219.

47. Brenner D.J. We can do better than effective dose for estimating or comparing low-dose radiation risk. Ann. ICRP, 2012, vol. 41, no. 3/4, pp. 124-128.

48. Health risks from exposure to low levels of ionizing radiation: BEIR VII phase 2. Washington, DC, The National Academies Press, 2006. 422 p.

49. Kasraie N., Jordan D., Keup Ch., Westra S. Optimizing communication with parents on benefits and radiation risks in pediatric imaging. J. Am. Coll. Radiol., 2018, vol. 15, no. 5, pp. 809-817.

50. Veitch T.A. Pediatric nuclear medicine. Part I: Developmental cues. J. Nucl. Med. Technol., 2000, vol. 28, no. 1, pp. 3-7.

Full-text article (in Russian)