The possibility of using low-energy (below 300 keV) electron accelerators in the agro-industrial complex (a review)

«Radiation and Risk», 2021, vol. 30, No. 3, pp.80-92

DOI: 10.21870/0131-3878-2021-30-3-80-92

Authors

Kharlamov V.A. – Sen. Researcher, C. Sc., Biol. Contacts: 109 km, Kievskoe Sh., Obninsk, Kaluga region, Russia, 249032. Tel.: (484) 399-69-53; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. .
Thorik O.V. – Researcher
Pomyasova M.G. – Researcher. RIRAE.
Russian Institute of Radiology and Agroecology, Obninsk

Abstract

An important place in the system of measures to ensure the phytosanitary safety of agricultural produce is traditionally given to chemicals. However, due to negative effects of the chemicals on the environment, new more effective and safe technologies were needed. Feasibility of the use of radia-tion technologies to improve food safety and agricultural quality has been studied for more than 75 years. Recently radiation-based technologies have become increasingly important in agricultural produce processing to preserve food spoilage during storage. Currently the use of electron beams with energy below 300 keV generated by electron accelerators is increasingly grown in agriculture. The key feature of electron beams is their ability to produce disinfectant effect on irradiated object due to low electrons permeability. It prevents the characteristic radiation-chemical reactions and dam-age to the structure in the internal volume of the biological specie Such objects are seeds of agricul-tural plants susceptible to infectious diseases caused by phytopathogens. The study aims at the evaluation of the possibility to use low-energy (below 300 keV) electron accelerators in the agro-industrial complex. The paper describes the device and the principle of operation of the state-of-the-art low-energy electron accelerators, as well as their application in the agricultural sector. The paper considers the effects of low-energy electron irradiation of agricultural products on seed phytopatho-gens and pests. From the analysis of feasibility of use of the low-energy electron accelerators for radiation-induced disinfection and disinsection it becomes evident that irradiation of the crop with low-energy electrons is effective approach to minimize adverse effects of phytopathogens and to prevent destruction of irradiated biological objects. Electron-beam irradiation minimally effects on the nutri-tional quality of food products.

Key words
food irradiation, radiosensitivity, microbiological safety, low-energy electron accelerator, agricultural crops, phytosanitary safety, sowing quality of seeds, food quality, shelf life.

References

1. Muller G., Lietz P., Munch H.D. Microbiology of plant foods. Ed.: I.M. Gracheva. Moscow, Food industry, 1977. 344 p. (In Russian).

2. Smirnova T.A., Kostrova E.I. Mikrobiologiya zerna i produktov ego pererabotki: ucheb. posobiye dlya vuzov [Microbiology of grain and products of its processing: textbook for universities]. Moscow, Agropromizdat, 1989. 159 p.

3. Pinstrup-Anderson P., Pandy-Lorch R., Rosegrant M.W. The world food situation: recent developments, emerging issues and long-term prospects. Vision 2020: Food Policy Report. Washington, DC, International Food Policy Research Institute, 1997. 36 p.

4. Tilman D., Fargione J., Wolff B., D’Antonio C., Dobson A., Howarth R., Schindler D., Schlesinger W.H., Simberloff D., Swackhamer D. Forecasting agriculturally driven global environmental change. Science, 2001, vol. 292, no. 5515, pp. 281-284.

5. Makarova M.A., Shevtsova A.A. Prospects of application of new means of protection against diseases in maize seed crops. Dal’nevostochnyy agrarnyy vestnik – Far Eastern Agrarian Herald, 2017, vol. 43, no. 3, pp. 55-60. (In Russian).

6. Morrison R.M. An economic analysis of electron accelerators and cobalt-60 for irradiating food. Commodity Economics Division, Economic Research Service, U.S. Department of Agriculture. Technical Bulletin No. 1762. Washington, DC, 1989. 38 p.

7. Pikaev A.K. Current state of radiation processing. Uspekhi khimii – Russian Chemical Reviews, 1995, vol. 64, no. 6, pp. 609-640. (In Russian).

8. Chernyaev A.P., Varzar S.M. Particle accelerators in modern world. Yadernaya fizika – Physics of Atomic Nuclei, 2014, vol. 77, no. 10, pp. 1266-1278. (In Russian).

9. Koz’min G.V., Geras’kin S.A., Sanzharova N.I. Radiatsionnyye tekhnologii v sel’skom khozyaystve i pishchevoy promyshlennosti [Radiation technologies in agriculture and food industry]. Obninsk, RIRAE, 2015. 400 p.

10. Bezuglov V.V., Bryazgin A.A., Vlasov A.Yu., Voronin L.A., Panfilov A.D., Radchenko V.M., Tkachenko V.O., Shtarklev E.A. Promyshlennyye uskoriteli elektronov ILU dlya sterilizatsii meditsinskikh izdeliy i obrabotki pishchevykh produktov [ILU industrial electron accelerators for sterilization of medical devices and food]. Pis’ma v ECHAYA – Particles and Nuclei, Letters, 2016, vol. 13, no. 7, pp. 1581-1585.

11. Bryazgin A.A., Bezuglov V.V., Voronin L.A., Korobeynikov M.V., Maximov S.A., Nekhaev V.E., Rad-chenko V.M., Sidorov A.V., Tkachenko V.O., Faktorovich B.L. Industrial electron accelerators type ILU for food products treatment. Radiation Technologies in Agriculture and Food Industry: Current State and Prospects: Proceedings of the International Research and Practice Conference, Obninsk, September 26-28, 2018. Obninsk, RIRAE, 2018, pp. 127-131. (In Russian).

12. Sanzharova N.I., Koz’min G.V., Bondarenko V.S. Nuclear technologies in agriculture: Science and technology development strategy. Innovatika i ekspertiza – Innovatics and Expert Examination, 2016, vol. 16, no. 1, pp. 197-206. (In Russian).

13. Pimemov E.P., Pavlov A.N., Vasil'eva N.A., Morozova A.I. The effects of different regimes of a pulsed linear electron accelerator on the microorganisms that contaminate spices. Radiation Technologies in Agriculture and Food Industry: Current State and Prospects: Proceedings of the International Research and Practice Conference, Obninsk, September 26-28, 2018. Obninsk, RIRAE, 2018, pp. 100-103. (In Russian).

14. Zabayev V.N. Primeneniye uskoriteley v nauke i promyshlennosti [Application of accelerators in science and industry]. Tomsk, Publishing office TPU, 2008. 195 p.

15. Chernyaev А.P. Uskoriteli v sovremennom mire [Accelerators in the world today]. Moscow, Moscow University Press, 2012. 368 p.

16. Alimov A.S. Prakticheskoye primeneniye elektronnykh uskoriteley [The practical application of electronic accelerators]. Preprint NIIYAF MGU – Preprint SINP MSU, 2011, vol. 13, no. 877, pp. 1-40.

17. Scharf W., Wieszczycka W. Particle accelerators for industrial processing (Part 1). Eksploatacja i Niezawodnosc – Maintenance and Reliability, 2001, no. 2-3, pp. 10-25. (In Polish).

18. Hayashi T. Decontamination of dry food ingredients and seeds with “soft-electrons” (low-energy electrons). Food Sci. Technol. Int. Tokyo, 1998, vol. 4, no. 2, pp. 114-120.

19. Hayashi T., Takahashi Y., Todoriki S. Sterilization of foods with low-energy electrons (“soft-electrons”). Radiat. Phys. Chem., 1998, vol. 52, no. 1-6, pp. 73-76.

20. Imamura T., Todoriki S., Sota N, Nakakita H., Ikenaga H., Hayashi T. Effect of ‘‘soft-electron’’ (low-energy electron) treatment on three stored-product insect pests. J. Stored Prod. Res., 2004, vol. 40, no. 2, pp. 169-177.

21. Kikuchi O.K., Todoriki S., Saito M., Hayashi T. Efficacy of soft-electron (low-energy electron beam) for soybean decontamination in comparison with gamma-rays. J. Food Sci., 2003, vol. 68, no. 2, pp. 649-652.

22. Hayashi T., Todoriki S. Low energy electron irradiation of food for microbial control. Irradiation for Food Safety and Quality: Proceedings of FAO/IAEA/WHO International Conference on Ensuring the Safety and Quality of Food through Radiation Processing. Vienna, 2001, pp. 118-128.

23. Mehnert R., Klenert P., Prager L. Low-energy electron accelerator for industrial radiation processing. Radiat. Phys. Chem., 1993, vol. 42, no. 1-3, pp. 525-529.

24. Baba T., Kaneko H., Taniguchi S. Soft electron processor for surface sterilization of food material. Radiat. Phys. Chem., 2004, vol. 71, no. 1-2, pp. 209-211.

25. Imamura T., Miyanoshita A., Todoriki S., Hayashi T. Usability of a soft-electron (low-energy electron) machine for disinfestation of grains contaminated with insect pests. Radiat. Phys. Chem., 2004, vol. 71, no. 1-2, pp. 211-213.

26. Imamura T., Todoriki S., Miyanoshita A., Horigane A.K., Yoshida M., Hayashi T. Efficacy of soft-electron (low-energy electron) treatment for disinfestation of brown rice containing different ages of the maize weevil, Sitophilus zeamais Motschulsky. Radiat. Phys. Chem., 2009, vol. 78, no. 7-8, pp. 627-630.

27. Rami Reddy P.V., Todoriki S., Miyanoshita A., Imamura T., Hayashi T. Effect of soft electron treatment on adzuki bean weevil, Callosobruchus chinensis (L.) (Col., Bruchidae). J. Appl. Entomol., 2006, vol. 130, no. 6-7, pp. 393-399.

28. Cutrubinis M., Delincee H., Stahl M., Roder O., Schaller H.J. Erste ergebnisse zum nachweis einer elektronenbehandlung von mais zur beizung bzw. entkeimung und entwesung [Preliminary results on detec-tion of maize treated with electrons for seed dressing and according decontamination and infestation]. Gesunde Pflanzen – Healthy Plants, 2005, vol. 57, no. 5, pp. 129-136.

29. Cutrubinis M., Delincee H., Stahl M., Roder O., Schaller H.J. Detection methods for cereal grains treated with low and high energy electrons. Radiat. Phys. Chem., 2005, vol. 72, no. 5, pp. 639-644.

30. EVONTA – Service GmbH. Available at: www.evonta.de (Accessed 07.11.2019).

31. Hayashi T., Okadome H., Toyoshima H., Todoriki S., Ohtsubo K. Rheological properties and lipid oxidation of rice decontaminated with low-energy electrons. J. Food Prot., 1998, vol. 61, no. 1, pp. 73-77.

32. Todoriki S., Hayashi T. Disinfection of seeds and sprout inhibition of potatoes with low energy electrons. Radiat. Phys. Chem., 2000, vol. 57, no. 3-6, pp. 253-255.

33. Hayashi T., Takahashi Y., Todoriki S. Low-energy electron effects on the sterility and viscosity of grains. J. Food Sci., 1997, vol. 62, no. 4, pp. 858-860.

34. Todoriki S., Kikuchi O.K., Nakaoka M., Miike M., Hayashi T. Soft electron (low energy electron) processing of foods for microbial control. Radiat. Phys. Chem., 2002, vol. 63, no. 3-6, pp. 349-351.

35. Markova Yu.A., Alekseenko A.L., Kramarskiy A.V., Savilov E.D. Plants as an element of environmental chain circulation of pathogenic for human bacteria. Sibirskiy meditsinskiy zhurnal (Irkutsk) – Siberian Medical Journal, 2012, vol. 114, no. 7. pp. 11-14. (In Russian).

36. Fan X., Sokorai K., Weidauer A., Gotzmann G., Rogner F.H., Koch E. Comparison of gamma and electron beam irradiation in reducing populations of E. coli artificially inoculated on mung bean, clover and fenugreek seeds, and affecting germination and growth of seeds. Radiat. Phys. Chem., 2017, vol. 130, pp. 306-315.

Full-text article (in Russian)