35 years after the Chernobyl NPP accident: methods of retrospective dosimetry in assessing of the consequences of large-scale uncontrolled radiation exposures, their subsequent development and application in oncoradiology (experience of A. Tsyb MRRC)

«Radiation and Risk», 2021, vol. 30, No. 2, pp.7-24

DOI: 10.21870/0131-3878-2021-30-2-7-24

Authors

Stepanenko V.F. – Head of Lab., D. Sc., Biol., Prof. Contacts: 4 Korolev Str., Obninsk, Kaluga region, Russia, 249035. Tel.: +7 (484) 399-70-02; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. .
Ivanov S.A. – Director, MD, Prof. of RAS
Kolyzhenkov T.V. – Lead. Researcher, C. Sc., Biol.
Bogacheva V.V. – Researcher
Iaskova E.K. – Lead. Researcher, C. Sc., Biol.
Petukhov A.D. – Researcher
Karyakin O.B. – Head of Dep., MD, Prof.
Kiseleva M.V. – Head of Dep., MD, Prof.
Krikunova L.I. – Head of Dep., MD, Prof.
Borysheva N.B. – Head of Dep., C. Sc., Phys.-Math.
Biryukov V.A. – Sen. Researcher, C. Sc., Med.
Rukhadze G.A. – Physician, C. Sc., Med.
Kucherov V.V. – Head of Dep., C. Sc., Med.
Korotkov V.A. – Head of Dep.
Ivannikov A.I. – Lead. Researcher, C. Sc., Phys.-Math.
Khailov A.M. – Sen. Researcher, C. Sc., Biol. A. Tsyb MRRC.
Kaprin A.D. – Director General, Academician of RAS, MD, Prof.
Shegay P.V. – Deputy Director General, C. Sc., Med.
Zharova E.P. – Researcher, Scientifical Secretary. NMRRC.
Zhumadilov K.Sh. – Prof. L. Gumilev ENU.
Endo S. – Prof.
Hoshi M. – Prof. Hiroshima University.
1 A. Tsyb MRRC, Obninsk
2 NMRRC, Moscow
3 L. Gumilyov Eurasian National University, Nur-Sultan, Kazakhstan
4 Hiroshima University, Hiroshima, Japan

Abstract

Individual retrospective dosimetry was developed at A. Tsyb Medical Radiological Research Centre (A. Tsyb MRRC) after the Chernobyl accident for assessment and analysis of radiation effects on people lived in radioactively contaminated settlements in the Kaluga and Bryansk regions. The method was also used in radiation epidemiology case-control studies within frames of international pilot projects. The obtained data demonstrated reliable dose-response relationship for thyroid cancer in patients with diagnosed thyroid cancer, who were children and adolescents at the time of the accident and resided in radioactively contaminated areas in the Bryansk region. The dose-response relationship for diagnosed invasive breast cancer was found in women, resided in radioactively contaminated settlements since the accident till the first diagnosis of cancer that was established within the period from October 2008 to February 2013. Their age at diagnosis was under 55 years. At the same time, no dose-response relationship for leukaemia was found in children under 5 years old at the time of the accident. The individual retrospective dosimetry method has been updated and used in pilot studies for verifying conservative estimates of radiation doses to the population exposed to radiation as a result of nuclear tests at the Semipalatinsk nuclear test site, as well as for verifying estimates of external radiation doses to people affected by the accident at the Fukushima Daiichi NPP. The method was also used for estimating individual doses from residual radioactivity for the survivors of the Hiroshima and Nagasaki atomic bombings. The long-term collaboration continues under bilateral International Collaboration Agreements between the National Medical Research Radiological Centre and leading research centres in the Republic of Kazakhstan and Japan. Since 2016 researchers and physicians of A. Tsyb MRRC have modified method of stimulated luminescence of natural and synthetic materials and developed innovative technology in vivo dosimetry that has been put into clinical practice for estimating spatial radiation doses distribution in internal organs at risk during the brachytherapy of prostate cancer, gynecologic and recurrent pelvic tumors, as well as for estimating local radiation dose to the skin of the breast gland with the tumor. The 35-year experience in the development and application of methods for individual retrospective dosimetry after the Chernobyl accident formed the basis for identifying future-pointing trends for the development of novel applications of stimulated luminescence techniques. Radiation-induced stimulated luminescence dosimetry can be applicable in uncontrolled radiation events; retrospective dosimetry method applicable for neutron beam radi-ation therapy is under development. The method of in vivo dosimetry is useful in radiation oncology. Now assembled thermoluminiscent micro-sized dosimeters are used for arterial radioembolization. At present, fea-sibility of using items of clothing and special inserts (buttons, fastenings, etc.), parts of wearable electronic devices as natural dosimeters, as well as the feasibility of using luminescent microdosimeters, made of different materials, after exposure to high LET radiation ranged from a fraction of mGy to the dose greater than 60 Gy have been examined. Development of flexible planar microdosimeter assemblies in order to obtain more detailed information about possible discrepancy in distribution of planned and actual radiation doses to patients during radiotherapy is considered.

Key words
retrospective dosimetry, accident at the Chernobyl NPP, accident at the Fukushima Daiichi NPP, Semipalatinsk, nuclear testings, Hiroshima and Nagasaki, in vivo dosimetry, radiation oncology, brachytherapy.

References

1. Abagian L.A., Asmolov V.G., Gus’kova A.K., Demin V.F., Il’in L.A., Izrael Yu.A., Kalugin A.K., Konviz V.S., Kuzmin I.I., Kentsevich A.D., Legasov V.A., Malkin S.D., Misenkov A.I., Pavlovskiy O.A., Petrov V.N., Pikalov V.K., Protsenko A.N., Riazantsev E.P., Sivintsev Yu.V., Sukhoruchkin V.K., Tokarenko V.F., Khrulev A.A., Shakh O.Ya. (A group of experts engaged by the State Committee on the Use of Atomic Energy of the USSR to prepare a report at the IAEA meeting held from 25 to 29 August 1986 in Vienna). Information about the accident at the Chernobyl nuclear power plant and its consequences, prepared for the IAEA. Atomnaya energiya – Atomic Energy, 1986, vol. 61, no. 5, pp. 301-320. (In Russian).

2. Il’in L.A., Balonov M.I., Buldakov L.A., Bur’iak V.N., Gordeev K.I., Dementiev S.I., Kondrusev A.I., Liaginskaia A.M., Matyukhin V.A., Ramzaev P.V., Savkin M.N., Konstantinov Yu.O., Linge I.I., Likhtarev I.A., Tsyb A.F., Stepanenko V.F., Ivanov V.K. Environmental features and medical-biological consequences of the accident at the Chernobyl nuclear power plant. Meditsinskaya radiologiya – Medical Radiology, 1989, vol. 34, no. 11, pp. 58-81 (In Russian).

3. Stepanenko V.F. Dosimetric monitoring and retrospective dosimetry of the population in the early and remote periods after the Chernobyl accident: the experience of the MRRC. Medical radiological consequences of Chernobyl: prognosis and evidence after 30 years. Eds.: corr. member of RAS V.K. Ivanov, Acad. of RAS A.D. Kaprin. Moscow, GEOS, 2015. pp. 10-53 (In Russian).

4. Stepanenko V.F., Tsyb A.F., Gavrilin Yu.I., Khrusch V.T., Shinkarev S.M., Skvortsov S.M., Kondrashov A.E., Iaskova E.K., Ivannikov A.I., Parshkov E.M., Shakhtarin V.V., Moskovko L.I., Petin D.V., Chebotareva I.V., Proshin A.D., Rozshko Yu.N., Dorokhov V.V., Rivkind N.B., Kvitko B.I., Kuzmin P.S., Leshakov S.Yu., Omel’chenko V.N. Doses of exposure to the thyroid gland among population of Russia as a result of the accident at the Chernobyl nuclear power plant (retrospective analysis). Radiatsiya i risk – Radiation and Risk, 1996, vol. 7, pp. 225-245 (In Russian).

5. Hoshi M., Stepanenko V.F., Gavrilin Yu.I., Volkov Yu.M., Makarenkova I.A., Takada J., Shevchuk V.E., Skvortsov V.G., Petin D.G., Iaskova E.K., Kondrashov A.E., Ivannikov A.I., Ermakova N.M., Chunikhin L.N. 129I and 131I ground deposition densities are correlated in Belarusian settlements contaminated following the Chernobyl accident. Chernobyl: message for the 21st Century. International Congress Series, 2002, vol. 1234, pp. 115-120. Amsterdam, Elsevier Science, 2002.

6. Takada J., Hoshi M., Endo S., Stepanenko V.F., Kondrashov A.E., Petin D., Skvortsov V., Tikounov D., Gavrilin Y., Snykov V.P. Dosimetry studies in Zaborie village. Appl. Radiat. Isot., 2000, vol. 52, no. 5, pp. 1165-1169.

7. Stepanenko V.F., Tsyb A.F., Matveenko V.F. Doses of exposure to the thyroid gland in the population of contaminated areas: methodology of work and measurement results. German-Russian conference on the measurement program in the RSFSR. Moscow, I.V. Kurchatov IAE, 1992, pp. 57-63. (In Russian)

8. Bailiff I. K., Stepanenko V. Retrospective dosimetry and dose reconstruction. Brussels, Luxembourg, 1996. 120 p. Available at: https://op.europa.eu/en/publication-detail/-/publication/13fe2c27-5c12-4bf9-ad66-537572fffdc1 (Accessed 30.12.2020)

9. Bailiff I.K., Stepanenko V. F., Goeksu H.Y., Botter-Jensen L., Brodski L., Chumak V., Correcher V., Delgado A., Golikov V., Jungner H., Khamidova L.G., Kolizhenkov T.V., Likhtarev I., Meckbach R., Petrov S.A., Sholom S. Comparison of retrospective luminescence dosimetry with computational modeling in two highly contaminated settlements downwind of the Chernobyl NPP. Health Phys., 2004, vol. 86, no. 1, pp. 25-41.

10. Ivannikov A.I., Gaillard-Lecanu E., Trompier F., Stepanenko V.F., Skvortsov V.G., Borysheva N.B., Tikunov D.D., Petin D.V. Dose reconstruction by EPR spectroscopy of tooth enamel: application to the population of Zaborie village exposed to high radioactive contamination after the Chernobyl accident. Health Phys., 2004, vol. 86, no. 2, pp. 121-134.

11. Use of electron paramagnetic resonance dosimetry with tooth enamel for retrospective dose assessment. IAEA-TECDOC-CRP 202. Contributors from Russia: Stepanenko V.F., Skvortsov V.G., Ivannikov A.I. Vienna, IAEA, 2002. 57 p. Available at: https://www-pub.iaea.org/MTCD/Publications/PDF/te_1331_web.pdf (Accessed 30.12.2020).

12. Davis S., Stepanenko V., Rivkind N., Kopecky K.J., Voilleque P., Shakhtarin V., Parshkov E., Kulikov S., Lushnikov E., Abrosimov A., Troshin V., Romanova G., Doroschenko V., Proshin A., Tsyb A. Risk of thyroid cancer in the Bryansk oblast of the Russian Federation after the Chernobyl power station accident. Radiat. Res., 2004, vol. 162, no. 3, pp. 241-248.

13. Davis S., Day R.W., Kopecky K.J., Mahoney M.C., McCarthy P.L., Michalek A.M., Moysich K.B., Onstad L.E., Stepanenko V.F., Voilleque P.G., Chegerova T., Falkner K., Kulikov S., Maslova E., Ostapenko V., Rivkind N., Shevchuk V., Tsyb A.F. Childhood leukaemia in Belarus, Russia, and Ukraine following the Chernobyl accident: results from an international collaborative population-based case-control study. Int. J. Epidem., 2006, vol. 35, no. 2, pp. 386-396.

14. Kopecky K.J., Stepanenko V., Rivkind N., Voilleque P., Onstad L., Shakhtarin V., Parshkov E., Kulikov S., Lushnikov E., Abrosimov A., Troshin V., Romanova G., Doroschenko V., Proshin A., Tsyb A., Davis S. Childhood thyroid cancer, radiation dose from Chernobyl, and dose uncertainties in Bryansk oblast, Russia: a population-based case-control Study. Radiat. Res., 2006, vol. 166, no. 2, pp. 367-374.

15. Rivkind N., Stepanenko V., Belukha I., Guenthoer J., Kopecky K.J., Kulikov S. Kurnosova I., Onstad L., Porter P., Shklovskiy-Kordi N., Troshin V., Voilleque P., Davis S. Female breast cancer risk in Bryansk Oblast, Russia, following prolonged low dose rate exposure to radiation from the Chernobyl power station accident. Int. J. Epidem., 2020, vol. 49, no. 2, pp. 448-456.

16. Rivkind N., Stepanenko V., Belukha I., Guenthoer J., Kopecky K.J, Kulikov S. Kurnosova I., Onstad L., Porter P., Shklovskiy-Kordi N., Troshin V., Voilleque P., Davis S. Breast cancer risk following prolonged low dose rate exposure to radiation from the Chernobyl power station accident. Supplemental material to: Female breast cancer risk following prolonged low dose rate exposure to radiation from the Chernobyl power station accident. Int. J. Epidem., 2020, vol. 49 (Suppl.), pp. 1-25.

17. Stepanenko V.F., Voillequé P.G., Gavrilin Yu.I., Khrouch V.T., Shinkarev S.M., Orlov M.Yu., Kondrashov A.E., Petin D.V., Iaskova E.K., Tsyb A.F. Estimating individual thyroid doses for a case-control study of childhood thyroid cancer in Bryansk Oblast, Russia. Radiat. Prot. Dosimetry, 2004, vol. 108, no. 2, pp. 143-160.

18. Stepanenko V.F., Orlov M. Yu., Voillequé P.G., Snykov V.P., Khvalenskiy Yu.A., Volokitin A.A., Gaziev Ya.I., Kryukova I.G., Endo S., Tanaka S., Hoshi M. 131I and 137Cs fallout in Russia and Belarus following the Chernobyl accident: analysis of archive data relevant to thyroid dose assessment. Indian J. Radiat. Res., 2005, vol. 2, no. 3, pp. 18-37.

19. Ivanov V.K., Tsyb A.F. Medical radiological consequences of Chernobyl for the population of Russia: assessment of radiation risks. Moscow, Meditsina, 2002. 392 p. (In Russian).

20. Ivanov V., Tsyb A., Ivanov S., Pokrovsky S. Medical radiological consequences of the Chernobyl catastrophe in Russia: estimation of radiation risks. St. Petersburg, Nauka, 2004. 388 p.

21. Medical radiological consequences of Chernobyl: prognosis and evidence after 30 years. Eds.: corr. member of RAS V.K. Ivanov, Acad. of RAS A.D. Kaprin. Moscow, GEOS, 2015. 450 p. (In Russian).

22. Radiation epidemiology of diseases of the human blood circulation system after radiation accidents. Ed.: corr. member of RAS V.K. Ivanov. Obninsk, A. Tsyb MRRC, 2016. 168 p. (In Russian).

23. Stepanenko V.F., Kaprin A.D., Ivanov S.A., Muldagaliev T.Zh., Kolyzhenkov T.V., Bogacheva V.V., Petu-khov A.D., Akhmedova U.A., Lipikhina A.V., Jambaev M.T., Apsalikova Z.S., Mansarina A.E., Iaskova E.K., Ivannikov A.I., Skvortsov V.G., Zhumadilov K.Sh., Hoshi M. Instrumental estimates of accumulated external dose using method of single grain retrospective luminescence dosimetry with quartz microcrystals:first results of international study for samples – “witness” of nuclear tests (Semey city, Republic of Kazakhstan). Radiatsiya i risk – Radiation and Risk, vol. 28, no. 4, pp. 118-128. (In Russian).

24. Zhumadilov K.Sh., Ivannikov A.I., Stepanenko V.F., Skvortsov V.G., Toyoda Sh., Endo S., Tanака К., Kaprin A.D., Galkin V.N., Ivanov S.A., Kolyzhenkov T.V., Akhmedova U.A., Bogacheva V.V., Hoshi M. EPR dosimetry among the population living in proximity to radioactive trace after the nuclear test on 29 August, 1949 at the Semipalatinsk nuclear test site. Radiatsiya i risk – Radiation and Risk, 2017, vol. 26, no. 4, pp. 74-83. (In Russian).

25. Stepanenko V.F., Hoshi M., Ivannikov A.I., Bailiff I.K., Zhumadilov K., Skvortsov V.G., Argembaeva R., Tsyb A.F. The 1st Nuclear Test in the former USSR of 29 August 1949: comparison of individual dose estimates by modeling with EPR retrospective dosimetry and luminescence retrospective dosimetry data for Dolon village, Kazakhstan. Radiat. Meas., 2002, vol. 42, no. 6-7, pp. 1041-1048.

26. Stepanenko V.F., Endo S., Kaprin A.D., Ivanov S.A., Kajimoto T., Tanaka K., Kolyzhenkov T.V., Petukhov A.D., Akhmedova U.A., Bogacheva V.V., Korotkov V.A., Hoshi M. An experience of instrumental estimation of cumulative external doses using single grain luminescence retrospective dosimetry method with quartz containing samples from Fukushima prefecture, Japan. Radiatsiya i risk – Radiation and Risk, 2018, vol. 27, no. 3, pp. 79-90. (In Russian).

27. Endo S., Fujii K., Kajimoto T., Tanaka K., Stepanenko V., Kolyzhenkov T., Petukhov A., Akhmedova U., Bogacheva V. Comparison of calculated beta- and gamma-ray doses after the Fukushima accident with data from single-grain luminescence retrospective dosimetry of quartz inclusions in a brick sample. J. Radiat. Res., 2018, vol. 59, no. 3, pp. 286-290.

28. Kerr G.D., Egbert S.D., Al-Nabulsi I., Bailiff I.K., Beck H.L., Belukha I.G., Cockayne J.E., Cullings H.M., Eckerman K.F., Granovskaya E., Grant E.J., Hoshi M., Kaul D.C., Kryuchkov V., Mannis D., Ohtaki M., Otani K., Shinkarev S., Simon S.L., Spriggs G.D., Stepanenko V.F., Stricklin D., Weiss J.F., Weitz R.L., Woda C., Worthington P.R., Yamamoto K., Young R.W. Workshop report on atomic bomb dosimetry: review of dose related factors for the evaluation of exposures to residual radiation at Hiroshima and Nagasaki. Health Phys., 2015. vol. 109, no. 6, pp.582-600.

29. Stepanenko V.F., Biryukov V.A., Kaprin A.D., Galkin V.N., Ivanov S.A., Kariakin O.B., Mardinskiy Yu.S., Gulidov I.A., Kolyzhenkov T.V., Ivannikov A.I., Borysheva N.B., Skvortsov V.G., Akhmedova U.A., Bogacheva V.V., Petukhov A.D., Yaskova E.K., Khailov A.M., Lepilina O.G., Sanin D.B., Korotkov V.A., Obukhov A.A., Anokhin Yu.N. Intracavitary offline in vivo dosimetry for high dose-rate prostate brachy-therapy with 192Ir: development of technology and first results of its application. Radiatsiya i risk – Radiation and Risk, 2017, vol. 26, no. 2, pp. 72-82. (In Russian).

30. Stepanenko V.F., Biryukov V.A., Kariakin O.B., Kaprin A.D., Galkin V.N., Ivanov S.A., Mardinskiy Yu.S., Kolyzhenkov T.V., Petukhov A.D., Bogacheva V.V., Akhmedova U.A., Yaskova E.K., Lepilina O.G., Sanin D.B., Skvortsov V.G., Ivannikov A.I., Khailov A.M., Anokhin Yu.N. Local absorbed doses of irradia-tion of medical personnel at brachytherapy of prostate cancer using 125I microsources of Russian production. Radiatsiya i risk – Radiation and Risk, 2017, vol. 26, no. 1, pp. 44-59. (In Russian).

31. Stepanenko V.F., Biryukov V.A., Kaprin A.D., Galkin V.N., Ivanov S.A., Borysheva N.B., Kariakin O.B., Mardinskiy Yu.S., Gulidov I.A., Kolyzhenkov T.V., Obukhov A.A., Ivannikov A.I., Skvortsov V.G., Akhmedova U.A., Bogacheva V.V., Petukhov A.D., Yaskova E.K., Khailov A.M., Lepilina O.G., Sanin D.B., Korotkov V.A., Anokhin Yu.N. In vivo dosimetry at high dose rate brachytherpapy for prostate cancer using 192Ir: comparison of dose distribution between planned and measured doses with intracavitary placement of autonomous luminescence microdosimeters. Radiatsiya i risk – Radiation and Risk, 2018, vol. 27, no. 1, pp. 77-85. (In Russian).

32. Korotkov V.A., Kaprin A.D., Ivanov S.A., Stepanenko V.F., Biryukov V.A, Borysheva N.B., Kolyzhenkov T.V., Akhmedova U.A., Bogacheva V.V., Petukhov A.D., Zharova E.P. Manifestations of late radiation urethritis in comparison with instrumental assessments of the spatial intra-cavity distribution of doses in the organ after high dose rate brachytherapy of prostate cancer with the use of 192Ir: preliminary results. Radiatsiya i risk – Radiation and Risk, 2019, vol. 28, no. 1, pp. 110-123. (In Russian).

33. Zharova E.P., Stepanenko V.F., Kiseleva M.V., Bogacheva V.V., Aminov G.G., Kolyzhenkov T.V., Petukhov A.D., Zharikova I.A., Demyanovich A.V., Borysheva N.B., Ivanov S.A., Kaprin A.D. In vivo dosimetry with luminescent microdosimeters in 192Ir brachytherapy of breast cancer: development of technology and clinical testing. Radiatsiya i risk – Radiation and Risk, 2020, vol. 29, no. 2, pp. 67-77. (In Russian).

34. Stepanenko V.F., Kolizhenkov T.V., Bogacheva V.V., Petukhov V.V., Biryukov V.A., Borysheva N.B., Kiseleva M.V., Korotkov V.A., Krikunova L.I., Kulieva G.Z., Zharova E.P., Iaskova E.K., Rukhadze G.A., Ivanov S.A., Shegay P.V., Kaprin A.D. Development and application of technologies with radiation-induced stimulated luminescence in oncoradiology and radiation safety: results and perspectives. Radiation and Organism: materials of the final scientific-practical conference, November 26, 2020. Obninsk, A. Tsyb MRRC, 2020, pp. 78-79. (In Russian).

35. Stepanenko V.F., Rakhypbekov T.K., Kaprin A.D., Ivanov S.A., Otani K., Endo S., Satoh K., Kawano N., Takatsuji T., Nakashima M., Shichijo K., Sakaguchi A., Kato H., Onda Y., Fujimoto N., Toyoda Sh., Sato H., Kolyzhenkov T.V., Petukhov A.D., Dyussupov A.A., Chaizhunusova N.Zh., Sayakenov N.B., Uzbekov D.E., Saimova A.Zh., Shabdarbaeva D.M., Pivina L.N., Skakov M.K., Vurim A.D., Gnyrya V.S., Azimkhanov A.C., Kolbayenkov A.N., Zhumadilov K.Sh., Kairkhanova Y.O., Yaskova E.K., Belukha I.G., Skvortsov V.G., Ivannikov A.I., Khailov A.M., Akhmedova U.A., Bogacheva V.V., Anokhin Yu.N., Orlenko S.P., Hoshi M. Irradiation of laboratory animals by neutron activated dust: development and application of the method – first results of international multicenter study. Radiatsiya i risk – Radiation and Risk, 2016, vol. 25, no. 4, pp.111-125. (In Russian).

36. Stepanenko V., Kaprin A., Ivanov S., Shegay P., Zhumadilov K., Petukhov A., Kolyzhenkov T., Bogacheva V., Zharova E., Iaskova E., Chaizhunusova N., Shabdarbayeva D., Amantayeva G., Baurzhan A., Ruslanova B., Abishev Zh., Apbassova M., Kairkhanova Y., Uzbekov D., Khismetova Z., Zhunussov Y., Fujimoto N., Hitoshi Sato H., Shichijo K., Nakashima M., Sakaguchi A., Toyoda Sh., Kawano N., Ohtaki M., Otani K., Endo S., Yamamoto M., Hoshi M. Internal doses in experimental mice and rats following exposure to neutron-activated 56MnO2 powder: results of an international, multicenter study. Radiat. Environ. Biophys., 2020, vol. 59, no. 4, pp. 683-692.

Full-text article (in Russian)