Effect of gamma-radiation and scanning proton beam on the morphofunctional characteristics of rat sarcoma M-1

«Radiation and Risk», 2020, vol. 29, No. 2, pp.101-114

DOI: DOI: 10.21870/0131-3878-2020-29-2-101-114


Yuzhakov V.V. – Head of Lab, C. Sc., Med. Contacts: 4 Korolyov str., Obninsk, Kaluga region, Russia, 249035. Tel.: +7 (903) 635 79 71; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. .
Korchagina K.S. – Researcher.
Fomina N.K. – Sen. Researcher, C. Sc., Biol.
Koryakin S.N. – Head of Lab., C. Sc., Biol.
Solovev A.N. – Head of Lab., C. Sc., Phys.-Math.
Ingel I.E. – Sen. Researcher, C. Sc., Biol.
Koretskaya A.E. – Res. Assistant.
Sevankaeva L.E. – Sen. Researcher.
Yakovleva N.D. – Lead. Researcher, C. Sc., Biol.
Tsyganova M.G. – Researcher.

A. Tsyb MRRC, Obninsk


Today proton therapy (PT) is the most advanced radiation therapy. Due to precise delivery of charged particles to a target, proton therapy destroys cancer cells, the risk of damaging surrounding tissues is very low. At present, physical properties of proton beams are understood, however their biological effectiveness needs further study. Effectiveness of radiotherapy depends on radiosensitivity of cancer cells. There are several factors that can determine radiosensitivity of tumor cells. One of them, mutant form of tumor-suppressor p53-gene (mt p53), makes possible de-termining tumor radiosensitivity, predicts the development and outcome of a disease. The mutant p53-gene occurs in tumor cells of more than 50% of cancer patients. However, there is no much information on its role in sensitivity of tumor cells to PT. The paper presents results of the study of effects of photon radiation with 60Co and proton beams on morphology and function of mt p53 positive sarcoma M-1 cells. Methods of study included: p53 immune-histochemical staining, proliferatiing cells nuclear antigen (PCNA), endothelium marker CD31, and determining mitotic and apoptotic indexes. The cells were exposed to gamma-radiation or to proton beams, radiation doses in the tests was the same. The study findings are the following: effectiveness of gamma-positive therapy estimated by the level of mitotic and of repopulating activity of irradiated neoplastic cells, induction of abnormal mitotic figures and apoptosis differs from the effectiveness of proton therapy; antitumor effect of proton therapy is more pronounced as compared with the effect of gamma-therapy. Relative biological effectiveness, RBE, of protons estimated by reduction of PCNA-positive fraction of tumor cells, increase in the number of abnormal mitotic figures and induced apoptosis was 1.3; 1.4 и 1.6 respectively.

Key words
gamma-radiation, protons, RBE, antitumor efficiency, M-1 sarcoma, mutant p53 gene, abnormal mitoses, apoptosis, angiogenesis, immunohistochemistry, PCNA, CD31.


1. Mohan R., Grosshans D. Proton therapy – present and future. Adv. Drug Deliv. Rev., 2017, vol. 109, pp. 26-44.

2. Vorobiev N.A., Mikhailov A.V., Smirnova E.V. Gutsalo Yu.V. Martynova N.I. Possibilities of proton therapy. Clinical aspects. Russkiy meditsinskiy zhurnal – Russian Medical Journal, 2017, no. 16, pp. 1175-1180. (In Russian).

3. Zabelin M.V., Klimanov V.A., Galyautdinova J.J., Samoilov A.S., Lebedev A.O., Shelyhina E.V. Proton radiation therapy: clinical application opportunities and research prospects. Issledovaniya i praktika v meditsine – Research’n Practical Medicine Journal, 2018, vol. 5, no 1, pp. 82-95. (In Russian).

4. Bushmanov A.Yu., Sheino I.N., Lipengolts A.A., Solovev A.N., Koryakin S.N. Prospects of proton therapy combined technologies in the treatment of cancer. Meditsinskaya radiologiya i radiatsionnaya bezopasnost' – Medical Radiology and Radiation Safety, 2019, vol. 64, no. 3, pp. 11-18. (In Russian).

5. Wedenberg M., Lind B.K., Hårdemark B. A model for the relative biological effectiveness of protons: the tissue specific parameter α/β of photons is a predictor for the sensitivity to LET changes. Acta Oncol., 2013, vol. 52, no. 3, pp. 580-588.

6. Paganetti H. Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer. Phys. Med. Biol., 2014, vol. 59, no. 22, pp. R419-R472.

7. Tommasino F., Durante M. Proton radiobiology. Cancers (Basel), 2015, vol. 7, no. 1. pp. 353-381.

8. Ivanov A.A., Bichkova T.M., Nikitenko O.V., Ushakov I.B. Radiobiological proton effects. Meditsinskaya radiologiya i radiatsionnaya bezopasnost' – Medical Radiology and Radiation Safety, 2019, vol. 64, no. 3, pp. 19-31. (In Russian).

9. Baskar R., Dai J., Wenlong N., Yeo R., Yeoh K.W. Biological response of cancer cells to radiation treatment. Front. Mol. Biosci., 2014, vol. 1, no. 24, pp. 1-9. DOI: 10.3389/fmolb.2014.00024.

10. Kim B.M., Hong Y., Lee S., Liu P., Lim J.H., Lee Y.H., Lee T.H., Chang K.T., Hong Y. Therapeutic implications for overcoming radiation resistance in cancer therapy. Int. J. Mol. Sci., 2015, vol. 16, no. 11, pp. 26880-26913.

11. Maier P., Hartmann L., Wenz F., Herskind C. Cellular pathways in response to ionizing radiation and their targetability for tumor radiosensitization. Int. J. Mol. Sci., 2016, vol. 17, no. 1, p. 102. DOI: 10.3390/ijms17010102.

12. Iuzhakov V.V., Sevan'kaeva L.E., Ul'ianenko S.E., Iakovleva N.D., Kuznetsova M.N., Tsyganova M.G., Fomina N.K., Ingel' I.E., Lychagin A.A. The effectiveness of fractionated exposure of sarcoma M-1 to gamma-radiation and fast neutrons. Radiatsionnaja biologija. Radiojekologija – Radiation Biology. Radioecology, 2013, vol. 53, no. 3, pp. 267-279. (In Russian).

13. Yuzhakov V.V., Romanko Y.S., Kaplan M.A., Galkin V.N., Majouga A.G., Grin M.A., Burmistrova N.V., Fomina N.K., Bandurko L.N., Sevankaeva L.E., Yakovleva N.D., Ingel I.E., Mozerov S.A., Starovoytova A.V. Effect of photodynamic therapy with the bacteriochlorophyll a derivative on growth and functional morphology of rat sarcoma M-1. Al'manakh klinicheskoy meditsiny – Almanac of Clinical Medicine, 2017, vol. 45, no. 4, pp. 333-347. (In Russian).

14. Sevankaeva L.E., Yuzhakov V.V., Konoplyannikov A.G., Romanko Yu.S., Bandurko L.N., Fomina N.K., Ingel I.E., Konoplyannikov M.A., Yakovleva N.D., Tsyganova M.G. Radiosensitising effect of human mesenchymal stem cells on sarcoma M-1 under local gamma-irradiation. Radiatsiya i risk – Radiation and Risk, 2017, vol. 26, no. 3, pp. 100-115. (In Russian).

15. Baskar R., Lee K.A., Yeo R., Yeoh K.W. Cancer and radiation therapy: current advances and future directions. Int. J. Med. Sci., 2012, vol. 9, no. 3. pp. 193-199.

16. Vitale I., Galluzzi L., Castedo M., Kroemer G. Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat. Rev. Mol. Cell Biol., 2011, vol.12, no. 6, pp. 385-392.

17. Di Pietro C., Piro S., Tabbì G., Ragusa M., Di Pietro V., Zimmitti V., Cuda F., Anello M., Consoli U., Salinaro E.T., Caruso M., Vancheri C., Crimi N., Sabini M.G., Cirrone G.A., Raffaele .L, Privitera G., Pulvirenti A., Giugno R., Ferro A., Cuttone G., Lo Nigro S., Purrello R., Purrello F., Purrello M. Cellular and molecular effects of protons: apoptosis induction and potential implications for cancer therapy. Apoptosis, 2006, vol. 11, no. 1, pp. 57-66.

18. Ristic-Fira A.M., Todorovic D.V., Koricanac L.B., Petrovic I.M., Valastro L.M., Cirrone P.G., Raffaele L., Cuttone G. Response of a human melanoma cell line to low and high ionizing radiation. Ann. N.Y. Acad. Sci., 2007, vol. 1095, pp. 165-174.

19. Lee K.B., Lee J.S., Park J.W., Huh T.L., Lee Y.M. Low energy proton beam induces tumor cell apoptosis through reactive oxygen species and activation of caspases. Exp. Mol. Med., 2008, vol. 40, no. 1. pp. 118-129.

20. Gerelchuluun A., Hong Z., Sun L., Suzuki K., Terunuma T., Yasuoka K., Sakae T., Moritake T., Tsuboi K. Induction of in situ DNA double-strand breaks and apoptosis by 200 MeV protons and 10 MV X-rays in human tumour cell lines. Int. J. Radiat. Biol., 2011, vol. 87, no. 1, pp. 57-70.

21. Mitteer R.A., Wang Y., Shah J., Gordon S., Fager M., Butter P.-P., Jun Kim H., Guardiola-Salmeron C., Carabe-Fernandez A., Fan Y. Proton beam radiation induces DNA damage and cell apoptosis in glioma stem cells through reactive oxygen species. Sci. Rep., 2015, vol. 5, pp. 13961-13973.

22. Lühr A., von Neubeck C., Pawelke J., Seidlitz A., Peitzsch C., Bentzen S.M., Bortfeld T., Debus J., Deutsch E., Langendijkm J.A., Loeffler J.S., Mohan R., Scholz M., Sørensen B.S., Weber D.C., Baumann M., Krause M. “Radiobiology of Proton Therapy”: results of an international expert workshop. Radiother. Oncol., 2018, vol. 128, no. 1, pp. 56-67.

23. Kaprin A.D., Galkin V.N., Zhavoronkov L.P., Ivanov V.K., Ivanov S.A., Romanko Yu.S. Synthesis of basic and applied research is the basis of obtaining high-quality findings and translating them into clinical practice. Radiatsiya i risk – Radiation and Risk, 2017, vol. 26, no. 2, pp. 26-40. (In Russian).

24. Kaprin A.D., Mardinskiy Y.S., Smirnov V.P., Ivanov S.A., Kostin A.A., Polikhov S.A., Reshetov I.V., Fatianova A.S., Denisenko M.V., Epatova T.V., Korenev S.V., Tereshchenko A.V., Filonenko E.V., Gafarov M.M., Romanko Yu.S. The history of radiation therapy (part I). Biomedical Photonics, 2019, vol. 8, no. 1, pp. 52-62. Available at: https://doi.org/10.24931/2413-9432-2019-8-1-52-62 (Accessed 22.01.2020). (In Russian).

25. Kaprin A.D., Smirnov V.P., Ivanov S.A., Polihov S.A., Reshetov I.V., Fatyanova A.C., Babaeva Yu.V., Denisenko M.V., Semenova N.M., Korenev S.V., Tereshchenko A.V., Filonenko E.V., Yuzhakov V.V., Koryakin S.N., Sukhova T.E., Gafarov M.M., Ogdanskaya K.V., Romanko Yu.S. To the 115th anniversary of Russian radiology. The history of the development of radiation therapy: radiation diagnosis in the A. Tsyb MRRC. Biomedical Photonics, 2019, vol. 8, no. 2, pp.47-50. (In Russian).

Full-text article (in Russian)