Bone-seeking radiopharmaceuticals based on phosphonic acids and 68Ga (review)

«Radiation and Risk», 2020, vol. 29, No. 1, pp.102-119

DOI: 10.21870/0131-3878-2020-29-1-102-119

Authors

Tishchenko V.K. – Lead. Researcher, C. Sc., Biol.
Petriev V.M. – Head of Lab., D. Sc., Biol., Prof. of MEPhI. Contacts: 4 Korolyov str., Obninsk, Kaluga region, Russia, 249035. Tel.: (484) 399-71-00; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. .
Ivanov S.A. – Director, MD, Prof. A. Tsyb MRRC.
Zavestovskaya I.N. – Head of N.G. Basov Physic High School, D. Sc., Phys.-Math. MEPhI.
Kaprin A.D. – General Director, Academician of RAS, MD, Prof. NMRRC.

1 A. Tsyb MRRC, Obninsk
2 National Research Nuclear University MEPhI, Moscow
3 NMRRC Russian Ministry of Health, Moscow

Abstract

Bone metastases cause severe bone pain, growing with solid tumor progression, and lead to significant decreasing patients quality of life. Nowadays positron emission tomography (PET) is the most informative method of radionuclide imaging. PET is highly sensitive non-invasive method of visualization of biochemical and molecular processes in the body. It enables to detect tumor lesions when structure changes are not determined or are not specific. Now radiopharmaceuticals based on 18F are available for bone metastases detection by PET. Their major disadvantage is cyclotron-based synthesis of 18F that limits the application of 18F-containing radiopharmaceuticals. During the last 15-17 years the interest in 68Ga has increased drastically around the world. 68Ga is the promising generator-based radionuclide with appropriate nuclear properties (Т1/2=68 min, B+=89%, E+Bmax=1,9 MeV) for radiosynthesis of a broad spectrum of radiopharmaceuticals. In this work nuclear-physical, chemical and biological properties of gallium-68 (68Ga) are presented. The approaches to synthesis of new bone-seeking compounds based on phosphonic acids and 68Ga are highlighted in detail. Thorough data about experimental studies and clinical application of the most promising com-pounds are also shown in this article.

Key words
gallium-68, phosphonic acids, bisphosphonates, bone-seeking radiopharmaceuticals, bone metastases, radionuclide diagnosis, positron emission tomography, ethylenediamine tet-ra(methylene phosphonic acid), 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylene phosphonic acid), DOTA, NOTA.

References

1. Coleman R.E. Skeletal complications of malignancy. Cancer, 1997, vol. 80, no. 8 (Suppl.), pp. 1588-1594.

2. Paes F.M., Serafini A.N. Systemic metabolic radiopharmaceutical therapy in the treatment of metastatic bone pain. Semin. Nucl. Med., 2010, vol. 40, no. 2, pp. 89-104.

3. Yu H.H.M., Tsai Y.Y., Hoffe S.E. Overview of diagnosis and management of metastatic disease to bone. Cancer Control, 2012, vol. 19, no. 2, pp. 84-91.

4. Petriev V.M., Tishchenko V.K., Krasikova R.N. 18F-FDG and other labeled glucose derivatives for use in radionuclide diagnosis of oncological diseases (review). Pharm. Chem. J., 2016, vol. 50, no. 4, pp. 209-220.

5. Ogawa K., Saji H. Advances in drug design of radiometal-based imaging agents for bone disorders. Int. J. Mol. Imaging, 2011, vol. 2011, pp. 537687.

6. Kulikov V.A., Belyaeva L.E. Metabolic reprogramming of tumor cells. Vestnik VGMU – Bulletin of VSMU, 2013, vol. 12, no. 2, pp. 6-18. (In Russian).

7. Pavlova N.N., Thompson C.B. The emerging hallmarks of cancer metabolism. Cell Metab., 2016, vol. 23, no. 1, pp. 27-47.

8. Smith T.A. Mammalian hexokinases and their abnormal expression in cancer. Br. J. Biomed. Sci., 2000, vol. 57, no. 2, pp. 170-178.

9. Jadvar H., Desai B., Conti P.S. Sodium 18F-fluoride PET/CT of bone, joint and other disorders. Semin. Nucl. Med., 2015, vol. 45, no. 1, pp. 58-65.

10. Segall G., Delbeke D., Stabin M.G., Even-Sapir E., Fair J., Sjdak R., Smith G.T. SNM practice guideline for sodium 18F-fluoride PET/CT bone scans 1.0. J. Nucl. Med., 2010, vol. 51, no. 11, pp. 1813-1820.

11. Rösch F. Past, present and future of 68Ge/68Ga generators. Appl. Radiat. Isot., 2013, vol. 76, pp. 24-30.

12. Larenkov A.A., Kodina G.E., Bruskin A.B. Gallium radionuclides in nuclear medicine: radiopharmaceuti-cals based on 68Ga. Meditsinskaya radiologiya i radiatsionnaya bezopasnoct’ – Medical Radiology and Radiation Safety, 2011, vol. 56, no. 5, pp. 56-73. (In Russian).

13. Yano Y., Anger H.O. A gallium-68 positron cow for medical use. J. Nucl. Med., 1964, vol. 5, pp. 484-487.

14. Velikyan I. Prospective of 68Ga-radiopharmaceutical development. Theranostics, 2014, vol. 4, no. 1, pp. 47-80.

15. Jalilian A.R. An overview on Ga-68 radiopharmaceuticals for positron emission tomography applications. Iran J. Nucl. Med., 2016, vol. 24, no. 1, pp. 1-10.

16. Lange R., ter Heine R., Knapp R., de Klerk J.M.H., Bloemendal H.J., Hendrikse N.H. Pharmaceutical and clinical development of phosphonate-based radiopharmaceuticals for the targeted treatment of bone metastases. Bone, 2016, vol. 91, pp. 159-179.

17. Green J.R. Antitumor effects of bisphosphonates. Cancer, 2003, vol. 97, no. 3 (Suppl. 3), pp. 840-847.

18. Jiang P., Zhang P., Mukthavaram R., Nomura N., Pingle S.C., Teng D., Chien S., Guo F., Kesari S. Anti-cancer effects of nitrogen-containing bisphosphonates on human cancer cells. Oncotarget, 2016, vol. 7, no. 36, pp. 57932-57942.

19. Mirzaei A., Jalilian A.R., Badbarin A., Mazidi M., Mirshojaei F., Geramifar P., Beiki D. Optimized produc-tion and quality control of 68Ga-EDTMP for small clinical trials. Ann. Nucl. Med., 2015, vol. 29, pp. 506-511.

20. Dewanjee M.K., Hnatowich D.J., Beh R. New 68Ga-labeled skeletal-imaging agents for positron scintigraphy. J. Nucl. Med., 1976, vol. 17, no. 11, pp. 1003-1007.

21. Toegel S., Wadsak W., Mien L.K., Viernstein H., Kluger R., Eidherr H., Haeusler D., Kletter K., Dudczak R., Mitterhauser M. Preparation and pre-vivo evaluation of no-carrier-added, carrier-added and cross-complexed [(68)Ga]-EDTMP formulations. Eur. J. Pharm. Biopharm., 2008, vol. 68, no. 2, pp. 406-412.

22. Petriev V.M., Tishchenko V.K., Smoryzanova O.A., Skvortsov V.G. Pharmacokinetics in intact rats of N,N,N’,N’-ethylenediaminetetrakis-(methylenephosphonic acid) labeled with gallium-68. Pharm. Chem. J., 2017, vol. 51, no. 5, pp. 331-336.

23. Mitterhauser M., Toegel S., Wadsak W., Lanzenberger R.R., Mien L.K., Kuntner C., Wanek T., Eidherr H., Ettlinger D.E., Viernstein H., Kluger R., Dudczak R., Kletter K. Pre vivo, ex vivo and in vivo evalua-tions of [68Ga]-EDTMP. Nucl. Med. Biol., 2007, vol. 34, no. 4, pp. 391-397.

24. Petriev V.M., Tishchenko V.K., Stepchenkova E.D., Zavestovskaya I.N., Shegai P.V., Ivanov S.A., Kaprin A.D. Effect of gallium carrier in 68Ga-ethylenediaminetetrakis (methylene phosphonic acid) on its be-havior in laboratory animals. Bulletin of the Lebedev Physics Institute, 2019, vol. 46, no. 10, pp. 319-323.

25. Fellner M., Riss P., Loktionova N., Zhernosekov K., Thews O., Geraldes C.F.G.C., Kovacs Z., Lukeš I., Rösch F. Comparison of different phosphorus-containing ligands complexing 68Ga for PET-imaging of bone metabolism. Radiochim. Acta, 2011, vol. 99, pp. 43-51.

26. Pfannkuchen N., Meckel M., Bergmann R., Bachmann M., Bal C., Sathekge M., Mohnike W., Baum R.P., Rösch F. Novel radiolabeled bisphosphonates for PET diagnosis and endoradiotherapy of bone me-tastases. Pharmaceuticals (Basel), 2017, vol. 10, no. 2, pp. E45.

27. Tishchenko V.K., Petriev V.M., Mikhailovskaya A.A., Stepchenkova E.D., Timoshenko V.Yu., Postnov A.A., Zavestovskaya I.N. Experimental investigation of biodistribution of new bone-seeking compounds based on phosphonic acids and gallium-68]. Bulleten’ eksperimental’noi biologii i meditsiny – Bulletin of Experimental Biology and Medicine, 2019, vol. 168, no. 12, pp. 739-743. (In Russian).

28. Tishchenko V.K., Petriev V.M., Mikhailovskaya A.A., Smoryzanova O.A., Postnov A.A. The biodistribution of a new bone-seeking agent based on pentaphosphonic acid and gallium-68 in tumor-bearing rats. IOP Conf. Series: Journal of Physics: Conf. Series, 2019, vol. 1189, pp. 012042.

29. Tsebrikova G.S., Baulin V.E., Kalashnikova I.P., Ragulin V.V., Zavel’skii V.O., Maruk A.Ya., Lunev A.S., Klement’eva O.E., Kodina G.E., Tsivadze A.Yu. Cyclen-containing phosphonic acids as components of osteotropic 68Ga radiopharmaceuticals. Zhurnal obshchey khimii – Journal of General Chemistry, 2015, vol. 85, no. 9, pp. 2071-2079. (In Russian).

30. Tsebrikova G.S., Barsamian R.T., Solov’ev V.P., Kudryashova Z.A., Baulin V.E., Wang Y.J., Tsivadze A.Yu. Complexation of gallium (III) nitrate with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis(methylenephosphonic acid). Izvestiya Akademii nauk. Seriya khimicheskaya – News of the Acade-my of Sciences. Chemical series, 2018, vol. 67, no. 12, pp. 2184-2187. (In Russian).

31. Kabachnik I.M., Medved’ T.Ya., Bel’skii F.I., Pisareva S.A. Synthesis and acid-base and complex-forming properties of 1,4,7,10-tetrakis(dihydroxyphosphorylmethyl)-1,4,7,10-tetraazacyclododecane. Vestnik Akademii nauk SSSR. Otdeleniye khimicheskikh nauk – Bulletin of the Academy of Sciences of the USSR, Division of chemical science, 1984, vol. 33, pp. 777-782. (In Russian).

32. Dho S.H., Choi S., Kim S., Cho E., Lee S., Jung S., Lim J. 68Ga labeling of DOTMP using freeze-dried kit for the imaging of bone metastasis. Proceedings of the KNS 2015 Fall Meeting, (pp. 1CD-ROM). Korea: KNS, 2015.

33. Jaswal A.P., Meena V.K., Prakash S., Pandey A., Singh B., Mishra A.K., Hazari P.P. [68Ga]/[188Re] complexed [CDTMP] trans-1,2-cyclohexyldinitrilotetraphosphonic acid as a theranostic agent for skeletal me-tastases. Front. Med., 2017, vol. 4, pp. 72.

34. Kodina G.E., Malysheva A.O., Klement’eva O.E. Osteotropic radiopharmaceuticals in Russian nuclear medicine techniques. Izvestiya Akademii nauk. Seriya Khimicheskaya – Russian Chemical Bulletin, Interna-tional Edition, 2016, vol. 65, no. 2, pp. 350-362. (In Russian).

35. Lunyov A.S., Clement’eva O.E., Lunyova K.A., Zhukova M.V., Malysheva A.O. Qualitative and quantita-tive comparisons of bone PET-Imaging using 68Ga-oxabiphor and Na18F. Saratovskij nauchno-meditsinskij zhournal – Saratov Journal of Medical Scientific Research, 2017, vol. 13, no. 4, pp. 886-891. (In Russian).

36. Ogawa K., Mukai T., Inoue Y., Ono M., Saji H. Development of a novel 99mTc-chelate-conjugated bisphos-phonate with high affinity for bone as a bone scintigraphic agent. J. Nucl. Med., 2006, vol. 47, pp. 2042-2047.

37. Martell A.E., Motekaitis R.J., Clarke E.T., Delgado R., Sun Y., Ma R. Stability constants of metal com-plexes of macrocyclic ligands with pendant donor groups. Supramol. Chem., 1996, vol. 6. pp. 353-363.

38. Imberti C., Chen Y.L., Foley C.A., Ma M.T., Paterson B.M., Wang Y., Young J.D., Hider R.C., Blower P.J. Tuning the properties of tris(hydroxypyridinone) ligands: efficient 68Ga chelators for PET imaging. Dalton Trans., 2019, vol. 48, no. 13, pp. 4299-4313.

39. Spang P., Herrmann C., Roesch F. Bifunctional gallium-68 chelators: past, present and future. Semin. Nucl. Med., 2016, vol. 46, pp. 373-394.

40. Kubicek V., Rudovsky J., Kotek J., Hermann P., Vander Elst L., Muller R.N., Kolar Z.I., Wolterbeek H.T., Peters J.A., Lukes I. A bisphosphonate monoamide analogue of DOTA: a potential agent for bone targeting. J. Am. Chem. Soc., 2005, vol. 127, no. 47, pp. 16477-16485.

41. Vitha T., Kubicek V., Hermann P., Elst L.V., Muller R.N., Kolar Z.I., Wolterbeek H.T., Breeman W.A., Lukes I., Peters J.A. Lanthanide(III) complexes of bis(phosphonate) monoamide analogues of DOTA: bone-seeking agents for imaging and therapy. J. Med. Chem., 2008, vol. 51, no. 3, pp. 677-683.

42. Meckel M., Fellner M., Thieme N., Bergmann R., Kubicek V., Rösch F. In vivo comparison of DOTA based 68Ga-labelled bisphosphonates for bone imaging in non-tumour models. Nucl. Med. Biol., 2013, vol. 4, pp. 823-830.

43. Fellner M., Biesalski B., Bausbacher N., Kubicek V., Hermann P., Rosch F., Thews O. (68)Ga-BPAMD: PET-imaging of bone metastases with a generator based positron emitter. Nucl. Med. Biol., 2012, vol. 39, no. 7, pp. 993-999.

44. Fellner M., Baum R.P., Kubicek V., Hermann P., Lukes I., Prasad V., Rosch F. PET/CT imaging of osteoblastic bone metastases with (68)Ga-bisphosphonates: first human study. Eur. J. Nucl. Med. Mol. Imaging, 2010, vol. 37, no. 4, pp. 834.

45. Guleria M., Das T., Amirdhanayagam J., Shinto A.S., Kamaleshwaran K.Km., Pandian A., Sarma H.D., Dash A. Convenient formulation of 68Ga-BPAMD patient dose using lyophilized BPAMD kit and 68Ga sourced from different commercial generators for imaging of skeletal metastases. Cancer Biother. Radiopharm., 2019, vol. 34, no. 2, pp. 67-75.

46. Meckel M., Kubiček V., Hermann P., Miederer M., Rösch F. A DOTA based bisphosphonate with an albumin binding moiety for delayed body clearance for bone targeting. Nucl. Med. Biol., 2016, vol. 43, no. 11, pp. 670-678.

47. Ogawa K., Takai K., Kanbara H., Kiwada T., Kitamura Y., Shiba K., Odani A. Preparation and evaluation of a radiogallium complex-conjugated bisphosphonate as a bone scintigraphy agent. Nucl. Med. Biol., 2011, vol. 38, no. 5, pp. 631-636.

48. Meckel M., Bergmann R., Miederer M., Roesch F. Bone targeting compounds for radiotherapy and imaging: *Me(III)-DOTA conjugates of bisphosphonic acid, pamidronic acid and zoledronic acid. EJNMMI Radiopharm. Chem., 2016, vol. 1, no. 1, pp. 14.

49. Papapoulos S.E. Bisphosphonates: how do they work? Best Pract. Res. Clin. Endocrinol. Metab., 2008, vol. 22, pp. 831-847.

50. Rogers M.J. From molds and macrophages to mevalonate: a decade of progress in understanding the molecular mode of action of bisphosphonates. Calcif. Tissue Int., 2004, vol. 75, no. 6. pp. 451-461.

51. Voloznev L.V. The mechanisms for the development of metastatic skeletal lesion and the role of N-bisphosphonates in its therapy. Oncologiya. Zhurnal im. P.A. Gertsena – Oncology. P.A. Hertsen Journal, 2013, vol. 1, pp. 73-77. (In Russian).

52. Khawar A., Eppard E., Roesch F., Ahmadzadehfar H., Kürpig S., Meisenheimer M., Gaertner F.C., Essler M., Bundschuh R.A. Preliminary results of biodistribution and dosimetric analysis of [68Ga]Ga-DOTAZOL: a new zoledronate-based bisphosphonate for PET/CT diagnosis of bone diseases. Ann. Nucl. Med., 2019, vol. 33, pp. 404-413.

53. Suzuki K., Satake M., Suwada J., Oshikiri S., Shino H., Dozono H., Ino A., Kasahara H., Minamizawa T. Synthesis and evaluation of a novel 68Ga-chelate-conjugated bisphosphonate as a bone-seeking agent for PET imaging. Nucl. Med. Biol., 2011, vol. 38, no. 7, pp. 1011-1018.

54. Holub J., Meckel M., Kubiček V., Rӧsch F., Hermann P. Gallium(III) complexes of NOTA-bis(phosphonate) conjugates as PET radiotracers for bone imaging. Contrast Media Mol. Imaging, 2015, vol. 10, pp. 122-134.

55. Passah A., Tripathi M., Ballal S., Yadav M.P., Kumar R., Roesch F., Meckel M., Sarathi Chakraborty P., Bal C. Evaluation of bone-seeking novel radiotracer 68Ga-NO2AP-Bisphosphonate for the detection of skele-tal metastases in carcinoma breast. Eur. J. Nucl. Med. Mol. Imaging, 2017, vol. 44, no. 1, pp. 41-49.

56. Wu Z., Zha Z., Choi S.R., Plössl K., Zhu L., Kung H.F. New 68Ga-PhenA bisphosphonates as potential bone imaging agents. Nucl. Med. Biol., 2016, vol. 43, no. 6. pp. 360-371.

Full-text article (in Russian)