Pharmacokinetic properties of a new bone-seeking compound based on N,N,N',N'- ethylenediaminetetrakis(methylene phosphonic acid) labeled with 68Ga in intact rats and rats with experimental model of bone callus

«Radiation and Risk», 2019, vol. 28, No. 4, pp.108-117

DOI: 10.21870/0131-3878-2019-28-4-108-117


Tishchenko V.K.1 – Senior Researcher, C. Sc., Biol.
Petriev V.M.1,2 – Lead. Researcher, D. Sc., Biol., Prof. Contacts: 4 Korolyov str, Obninsk, Kaluga region, 249035, Russia. Tel.: (484) 399-71-00; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. .
Mikhailovskaya A.A.1 – Senior Researcher, C. Sc., Biol.
Smoryzanova O.A.1 – Senior Researcher, C. Sc., Biol.
Ivanov S.A.1 – Director, MD, Prof.
Kaprin A.D.3 – General Director, Academician of RAS, MD, Prof.

1 A. Tsyb MRRC, Obninsk.
2 National Research Nuclear University MEPhI, Moscow.
3 NMRRC Russian Ministry of Health, Moscow.


The objective of this work was the study of pharmacokinetic properties of N,N,N',N'- ethylenedia-minetetrakis(methylene phosphonic acid) labeled with gallium-68 (68Ga-EDTMP) as a potential radiotracer for bone metastases imaging by positron emission tomography (PET). The investigation was carried out in both intact Wistar rats and rats with experimental model of bone callus. It was shown, that 68Ga-EDTMP had high bone affinity and reduced uptake in soft organs and tissues. The peak amount of activity in femur of intact rats reached 1,61%/g at 1 h after intravenous administration. The levels of activity in skeleton have been twice as high as those in blood already at 1 h after injection, and in muscle the amount of 68Ga-EDTMP was about 4-15 times lower as compared with bones. The highest uptake of activity in bone callus was 2,41%/g, and was almost twice the amount of 68Ga-EDTMP in intact femur. In conclusion, 68Ga-EDTMP can be a new promising PET radiotracer for bone metastases imaging.

Key words
N,N,N',N'-ethylenediaminetetrakis(methylene phosphonic acid), gallium-68, phosphonates, bone metastases, positron emission tomography, radionuclide diagnosis.


1. Coleman R.E. Skeletal complications of malignancy. Cancer, 1997, vol. 80, no. 8 (Suppl.), pp. 1588-1594.

2. Petriev V.M., Tishchenko V.K., Krasikova R.N. 18F-FDG and other labeled glucose derivatives for use in radionuclide diagnosis of oncological diseases (review). Khimiko-farmatsevticheskiy zhurnal – Pharma-ceutical Chemistry Journal, 2016, vol. 50, no. 4, pp. 209-220. (In Russian).

3. Broski S.M., Young J.R., Kendi A.T., Subramaniam R.M. Skeletal metastases evaluation: value and impact of PET/computed tomography on diagnosis, management and prognosis. PET Clin., 2019, vol. 14, no. 1, pp. 103-120.

4. Rösch F. Past, present and future of 68Ge/68Ga generators. Appl. Radiat. Isot., 2013, vol. 76, pp. 24-30.

5. Wong K.K., Piert M. Dynamic bone imaging with 99mTc-labeled diphosphonates and 18F-NaF: mechanisms and applications. J. Nucl. Med., 2013, vol. 54, no. 4, pp. 590-599.

6. Brenner A.I., Koshy J., Morey J., Lin C., DiPoce J. The bone scan. Semin. Nucl. Med., 2012, vol. 42, no. 1, pp. 11-26.

7. Bahrami-Samani A., Ghannadi-Maragheh M., Jalilian A.R., Meftahi M., Shirvani-Arani S., Moradkhani S. Production, quality control and biological evaluation of 153Sm-EDTMP in wild-type rodents. Iran J. Nucl. Med., 2009, vol. 17, no. 2, pp. 12-19.

8. Lange R., ter Heine R., Knapp R., de Klerk J.M.H., Bloemendal H.J., Hendrikse N.H. Pharmaceutical and clinical development of phosphonate-based radiopharmaceuticals for the targeted treatment of bone me-tastases. Bone, 2016, vol. 91, pp. 159-179.

9. Toegel S., Wadsak W., Mien L.K., Viernstein H., Kluger R., Eidherr H., Haeusler D., Kletter K., Dudczak R., Mitterhauser M. Preparation and previvo evaluation of no-carrier-added, carrier-added and cross-complexed [(68)Ga]-EDTMP formulations. Eur. J. Pharm. Biopharm., 2008, vol. 68, no. 2, pp. 406-412.

10. Dewanjee M.K., Hnatowich D.J., Beh R. New 68Ga-labeled skeletal-imaging agents for positron scintigraphy. J. Nucl. Med., 1976, vol. 17, no. 11, pp. 1003-1007.

11. Mirzaei A., Jalilian A.R., Badbarin A., Mazidi M., Mirshojaei F., Geramifar P., Beiki D. Optimized produc-tion and quality control of 68Ga-EDTMP for small clinical trials. Ann. Nucl. Med., 2015, vol. 29, no. 6, pp. 506-511.

12. Mitterhauser M., Toegel S., Wadsak W., Lanzenberger R.R., Mien L.K., Kuntner C., Wanek T., Eidherr H., Ettlinger D.E., Viernstein H., Kluger R., Dudczak R., Kletter K. Pre vivo, ex vivo and in vivo evaluations of [68Ga]-EDTMP. Nucl. Med. Biol., 2007, vol. 34, no. 4, pp. 391-397.

13. Jaswal A.P., Meena V.K., Prakash S., Pandey A., Singh B., Mishra A.K., Hazari P.P. [68Ga]/[188Re] complexed [CDTMP] trans-1,2-cyclohexyldinitrilotetraphosphonic acid as a theranostic agent for skeletal metastases. Front. Med., 2017, vol. 4, p. 72.

14. Pfannkuchen N., Meckel M., Bergmann R., Bachmann M., Bal C., Sathekge M., Mohnike W., Baum R.P., Rösch F. Novel radiolabeled bisphosphonates for PET diagnosis and endoradiotherapy of bone metasta-ses. Pharmaceuticals (Basel), 2017, vol. 10, no. 2, p. E45.

15. Vitha T., Kubicek V., Hermann P., Elst L.V., Muller R.N., Kolar Z.I., Wolterbeek H.T., Breeman W.A., Lukes I., Peters J.A. Lanthanide (III) complexes of bis(phosphonate) monoamide analogues of DOTA: bone-seeking agents for imaging and therapy. J. Med. Chem., 2008, vol. 51, no. 3, pp. 677-683.

16. Fellner M., Biesalski B., Bausbacher N., Kubicek V., Hermann P., Rosch F., Thews O. (68)Ga-BPAMD: PET-imaging of bone metastases with a generator based positron emitter. Nucl. Med. Biol., 2012, vol. 39, no. 7, pp. 993-999.

17. Suzuki K., Satake M., Suwada J., Oshikiri S., Shino H., Dozono H., Ino A., Kasahara H., Minamizawa T. Synthesis and evaluation of a novel 68Ga-chelate-conjugated bisphosphonate as a bone-seeking agent for PET imaging. Nucl. Med. Biol., 2011, vol. 38, no. 7, pp. 1011-1018.

18. Meckel M., Bergmann R., Miederer M., Roesch F. Bone targeting compounds for radiotherapy and imag-ing: *Me(III)-DOTA conjugates of bisphosphonic acid, pamidronic acid and zoledronic acid. EJNMMI Radi-opharm. Chem., 2016, vol. 1, no. 1, p. 14.

19. Autio A., Virtanen H., Tolvanen T., Liljenbäck H., Oikonen V., Saanijoki T., Siitonen R., Käkelä M., Schüssele A., Teräs M., Roivainen A. Absorption, distribution and excretion of intravenously injected 68Ge/68Ga generator eluate in healthy rats, and estimation of human radiation dosimetry. EJNMMI Res., 2015, vol. 5, no. 1, p. 117.

20. Bernstein L.R. Mechanisms of therapeutic activity for gallium. Pharmacol. Rev., 1998, vol. 50, no. 4, pp. 665-682.

21. Kawabata H. Transferrin and transferrin receptors update. Free Radic. Biol. Med., 2019, vol. 133, pp. 46-54.

22. Ponka P., Lok C.N. The transferrin receptor: role in health and disease. Int. J. Biochem. Cell. Biol., 1999, vol. 31, no. 10, pp. 1111-1137.

Full-text article (in Russian)