Quantitative changes in the stem cell population of cervical cancer cell line HeLa under the influence of fractionated gamma-irradiation in vitro

«Radiation and Risk», 2019, vol. 28, No. 2, pp.112-123

DOI: 10.21870/0131-3878-2019-28-2-112-123

Authors

Matchuk O.N. – Senior Researcher, C. Sc., Biol. Contacts: 4 Korolyov str., Obninsk, Kaluga region, 249036, Russia. Tel.: +7 (484) 399-71-88; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. .
Zamulaeva I.A. – Head of Dep., D. Sc., Biol., Prof.

A. Tsyb MRRC, Obninsk, Russia

Abstract

Radioresistance of cancer stem cells (CSCs) is considered as one of the possible causes of cancer recurrence after radiation therapy. However, the regularities and mechanisms of the effect of fractionated irradiation on this cell population have been insufficiently studied, particularly, there is little evidence of mechanisms of fractionated irradiation effects on cervical cancer stem cells. Therefore, the goal of this work is elucidating quantitative changes in stem cells of cervical cancer cell line HeLa following γ-irradiation in the standard dose fractionation mode (2 Gy daily for 5 days). CSCs were identified by flow cytometry by their ability to exclude the fluorescent dye Hoechst 33342 (SP method) 24 hours after each dose fraction in the cumulative dose range up to 10 Gy. The relative and absolute number of CSCs increased after irradiation at cumulative doses up to 6 Gy. However, further dose increasing resulted in reduction of the number of CSC, and absolute number of the cells remained unchanged. At the same time, increasing radiation exposure caused inhibition of the cells growth as compared to the control, as expected. The obtained results were compared with previously published data on effects of single acute irradiation in the dose range up to 10 Gy on CSCs. Possible mechanisms of the observed effects seem to include the higher radioresistance of CSCs in comparison with the other tumor cells, CSC proliferation during the postradiation repopulation of cancer cells, and dedifferentiation of non-stem cells that survived irradiation and their transition to CSCs pool.

Key words
Cancer stem cells, SP, uterine cervix cancer, HeLa, radioresistance, dedifferentiation, low-LET ionizing radiation, fractionated irradiation, single irradiation, flow cytometry

References

1. Dubrovska A. Report on the International Workshop «Cancer stem cells: The mechanisms of radioresistance and biomarker discovery». Int. J. Radiat. Biol., 2014, vol. 90, no. 8, pp. 607-614.

2. Rycaj K., Tang D.G. Cancer stem cells and radioresistance. Int. J. Radiat. Biol., 2014, vol. 90, no. 8, pp. 615-621.

3. Matchuk O.N., Zamulaeva I.A., Selivanova E.I., Lipunov N.M., Pronjushkina K.A, Ul'janenko S.E., Lychagin A.A., Smirnova S.G., Orlova N.V., Saenko A.S. Increase in the number of cancer stem cells af-ter exposure to low-LET radiation. Radiatsionnaya biologiya. Radiojekologiya – Radiation Biology. Radioe-cology 2012, vol. 52, no. 3, pp. 261-267. (In Russian).

4. Matchuk O.N., Zamulaeva I.A., Kovalev O.A., Saenko A.S. Radioresistance mechanisms of side population cells in mouse melanoma cell line B16. Citologya – Cytology, 2013, vol. 55, no. 8, pp. 553-559. (In Russian).

5. Matchuk O.N., Saenko A.S. Influence of low-LET radiation and hemotherapy on tumor stem cells (SP) of a melanoma B16 and adenocarcinoma of a mammary gland of MCF-7. Radiatsija i risk – Radiation and Risk, 2013, vol. 22, no. 2, pp. 67-76. (In Russian).

6. Proskurjakov S.Ja., Matchuk O.N., Zamulaeva I.A. Current state and prospects for developing new approaches to melanoma treatment. Vestnik RONC im. N.N. Blohina – Journal of N.N. Blokhin RCRC, 2011, vol. 22, no. 2, pp. 31-40. (In Russian).

7. Chang L., Graham P., Hao J., Ni J., Deng J., Bucci J., Malouf D., Gillatt D., Li Y. Cancer stem cells and signaling pathways in radioresistance. Oncotarget., 2016, vol. 7, no. 10, pp. 11002-11017.

8. Qi X.S., Pajonk F., McCloskey S., Low D.A., Kupelian P., Steinberg M., Sheng K. Radioresistance of the breast tumor is highly correlated to its level of cancer stem cell and its clinical implication for breast irradiation. Radiother Oncol., 2017, vol. 124, no. 3, pp. 455-461.

9. Yang F., Xu J., Tang L., Guan X. Breast cancer stem cell: the roles and therapeutic implications. Cell Mol. Life Sci., 2017, vol. 74, no. 6, pp. 951-966.

10. Krause M., Dubrovska A., Linge A., Baumann M. Cancer stem cells: radioresistance, prediction of radiotherapy outcome and specific targets for combined treatments. Adv. Drug Deliv. Rev., 2017, vol. 109, pp. 63-73.

11. Liu H., Wang Y.J., Bian L., Fang Z.H., Zhang Q.Y., Cheng J.X. CD44+/CD24+ cervical cancer cells resist radiotherapy and exhibit properties of cancer stem cells. Eur. Rev. Med. Pharmacol. Sci., 2016, vol. 20, no. 9, pp. 1745-1754.

12. Malignant neoplasms in Russia in 2015 (morbidity and mortality). Eds.: A.D. Kaprin, V.V. Starinskiy, G.V. Petrova. Moscow, Р. Hertsen MORI, 2017. 250 p. (In Russian).

13. Krikunova L.I., Sychenkova N.I., Shentereva N.I., Mkrtchyan L.S. Radiotherapy in oncogynecology. Terapevticheskaya radiologiya – Therapeutic Radiology. Eds: akad. RAS, prof. A.F. Tsyb, Corr. Member RAS, prof. Yu.S. Mardynskiy. Moscow, Izd. Medicinskaya kniga, 2010, pp. 347-383. (In Russian).

14. Zamulaeva I.A., Matchuk O.N., Selivanova E.I., Andreev V.G., Lipunov N.M, Makarenko S.A., Zhavoronkov L.P, Saenko A.S. Increase in the number of cancer stem cells after exposure to low-LET radiation. Radiacionnaya biologiya. Radioekologiya – Radiation Biology. Radioecology, 2014, vol. 54, no. 3, pp. 256-264. (In Russian).

15. Hirschmann-Jax C., Foster A.E., Wulf G.G., Nuchtern J.G, Jax T.W., Gobel U., Goodell M.A., Brenner M.K. A distinct "side population" of cells with high drug efflux capacity in human tumor cells. Proc. Natl. Acad. Sci. USA, 2004, vol. 101, no. 39, pp. 14228-14233.

16. Qi W., Zhao C., Zhao L., Liu N., Li X., Yu W., Wei L. Sorting and identification of side population cells in the human cervical cancer cell line HeLa. Cancer Cell Int., 2014, vol. 14, no. 1, Article 3.

17. Wang K., Zeng J., Luo L., Yang J., Chen J., Li B., Shen K. Identification of a cancer stem cell-like side population in the HeLa human cervical carcinoma cell line. Oncol. Lett., 2013, vol. 6, no. 6, pp. 1673-1680.

18. López J., Poitevin A., Mendoza-Martínez V., P rez-Plasencia C., García-Carrancá A. Cancer-initiating cells derived from established cervical cell lines exhibit stem-cell markers and increased radioresistance. BMC Cancer, 2012, vol. 12, no. 48, pp. 1-14.

19. Chhabra R. Cervical cancer stem cells: opportunities and challenges. J. Cancer Res. Clin. Oncol., 2015, vol. 141, no. 11, pp. 1889-1897.

20. Phillips T.M., McBride W.H., Pajonk F. The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation. J. Natl. Cancer Inst., 2006, vol. 98, no. 24, pp. 1777-1785.

21. Lagadec C., Vlashi E., Della Donna L., Meng Y., Dekmezian C., Kim K., Pajonk F. Survival and self-renewing capacity of breast cancer initiating cells during fractionated radiation treatment. Breast Cancer Res., 2010, vol. 12, no. 1, Article R13.

22. Gao X., McDonald J.T., Hlatky L., Enderling H. Acute and fractionated irradiation differentially modulate glioma stem cell division kinetics. Cancer Res., 2013, vol. 73, no. 5, pp. 1481-1490.

23. Kim M.J., Kim R.K., Yoon C.H., An S., Hwang S.G., Suh Y., Park M.J., Chung H.Y., Kim I.G., Lee S.J. Importance of PKCδ signaling in fractionated-radiation-induced expansion of glioma-initiating cells and resistance to cancer treatment. J. Cell Sci., 2011, vol. 124, no. 18, pp. 3084-3094.

24. Kim R.K., Suh Y., Cui Y.H., Hwang E., Lim E.J., Yoo K.C., Lee G.H., Yi J.M., Kang S.G., Lee S.J. Fractionated radiation-induced nitric oxide promotes expansion of glioma stem-like cells. Cancer Sci., 2013, vol. 104, no. 9, pp. 1172-1177.

25. Cojoc M., Peitzsch C., Kurth I., Trautmann F., Kunz-Schughart L.A., Telegeev G.D., Stakhovsky E.A., Walker J.R., Simin K., Lyle S., Fuessel S., Erdmann K., Wirth M.P., Krause M., Baumann M., Dubrovska A. Aldehyde dehydrogenase is regulated by β-catenin/TCF and promotes radioresistance in prostate cancer progenitor cells. Cancer Res., 2015, vol. 75, no. 7, pp. 1482-1494.

26. Cho K.J., Park E.J., Kim M.S., Joo Y.H. Characterization of FaDu-R, a radioresistant head and neck cancer cell line, and cancer stem cells. Auris. Nasus. Larynx., 2018, vol. 45, no. 3, pp. 566-573.

27. Skvortsov S., Skvortsova I.I., Tang D.G., Dubrovska A. Prostate cancer stem cells: current understand-ing. Stem Cells, 2018, vol. 36, no. 10, pp. 1457-1474.

28. Chaffer C.L., Brueckmann I., Scheel C., Kaestli A.J., Wiggins P.A., Rodrigues L.O., Brooks M., Reinhardt F., Su Y., Polyak K., Arendt L.M., Kuperwasser C., Bierie B., Weinberg R.A. Normal and neo-plastic nonstem cells can spontaneously convert to a stem-like state. Proc. Natl. Acad. Sci. USA, 2011, vol. 108, no. 19, pp. 7950-7955.

29. Iliopoulos D., Hirsch H.A., Wang G., Struhl K. Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc. Natl. Acad. Sci. USA, 2011, vol. 108, no. 4. pp. 1397-1402.

30. Cabrera M.C., Hollingsworth R.E., Hurt E.M. Cancer stem cell plasticity and tumor hierarchy. World J. Stem Cell, 2015, vol. 7, no. 1, pp. 27-36.

31. Li F., Zhou K., Gao L., Zhang B., Li W., Yan W., Song X., Yu H., Wang S., Yu N., Jiang Q. Radiation induces the generation of cancer stem cells: a novel mechanism for cancer radioresistance. Oncol. Lett., 2016, vol. 12, no. 5, pp. 3059-3065.

32. Gao X., Sishc B.J., Nelson C.B., Hahnfeldt P., Bailey S.M., Hlatky L. Radiation-induced reprogramming of presenescent mammary epithelial cells enriches putative CD44(+)/CD24(-/low) stem cell phenotype. Front Oncol., 2016, no. 6, Article 138.

33. Lee S.Y., Jeong E.K., Ju M.K., Jeon H.M., Kim M.Y., Kim C.H., Park H.G., Han S.I., Kang H.S. Induction of metastasis, cancer stem cell phenotype and oncogenic metabolism in cancer cells by ionizing radiation. Mol. Cancer, 2017, vol. 16, no. 1, Article 10.

34. Kaprin A.D., Galkin V.N., Zhavoronkov L.P., Ivanov V.K., Ivanov S.A., Pomanko Yu.S. Synthesis of basic and applied research is the basis of obtaining high-quality findings and translating them into clinical practice. Radiatsiya i risk – Radiation and Risk, 2017, vol. 26, no. 2, pp. 26-40. (In Russian).

Full-text article (in Russian)