Using correlation and factor analysis to estimate the relationship between effective dose to a patient and specific CT settings

«Radiation and Risk», 2019, vol. 28, No. 1, pp.47-58

DOI: 10.21870/0131-3878-2019-28-1-47-58


Matkevich Е.I.1 – Radiologist, Teacher, C. Sc., Med.
Sinitsyn V.E.2 – Prof., МD.
Zelikman M.I.3 – Scientific Director, D. Sc., Tech., Prof.
Ivanov I.V.1,4 – МD, Prof., Lead. Researcher. Contacts: 31 Pr. Budennogo, Moscow, Russia, 105275. Tel.: +7 (926) 126 77 25; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. .

1 Sechenov First Moscow State Medical University, Moscow.
2 Lomonosov Moscow State University, Moscow.
3 Design office RoentgenTest Co Ltd, Moscow.
4 Izmerov Research Institute of Occupational Health, Moscow.


To optimize patient protection in computed tomography and to ensure that patient doses are as low as reasonably achievable for the specific CT examination the protocols tailored to patient age or size, anatomical area of imaging should be applied. Because dose estimates from different imaging modalities vary substantially, standardization of dose and reduction in variation in dose without affecting the clinical purpose, development of examination-specific CT protocols for different patient groups is required. The presented study is dictated by the need to develop national examination and patient specific diagnostic reference levels (DRL) for computed tomography (CT). The purpose of the study is to examine the feasibility of using correlation and factor analysis to estimate relationship between effective dose to a patient and CT settings. To solve the task 12 CT protocols in 199 single-phase scans included head, thoracic, abdominal and pelvic organs, as well as scans included several body parts were examined. The following was found: strong correlation (0.77-1.0) between effective radiation dose and absorbed radiation dose (Dose Length Product – DLP, and CT Dose Index – CTDI); moderate correlation (0.48-0.64) between effective dose and body mass, and CT characteristics (slice thickness and collimation); in case of simultaneous scanning of several body parts moderate correlation – 0.59 – was found between effective radiation dose and scanned areas (dose coefficient EDLP). Obtained results allow authors to conclude that for calculating diagnostic reference levels for specific healthcare facility development of a CT-specific and anatomical area-specific databases is required.

Key words
Patients radiation doses, absorbed radiation dose, diagnostic reference levels, computed tomography, correlation analysis, factor analysis.


1. Kashcheev V.V., Pryakhin E.A. Medical diagnostic imaging: radiation safety issues. Review. Radiatsiya i risk – Radiation and Risk, 2018, vol. 27, no. 4, pp. 49-64. DOI: 10.21870/0131-3878-2018-27-4-49-64. (In Russian).

2. Balonov M., Golikov V., Zvonova I., Kalnitsky S., Repin V., Sarycheva S., Chipiga L. Current levels of medical exposure in Russia. Radiatsionnaya gigiena – Radiation Hygiene, 2015, vol. 8, no 3, pp. 67-79. (In Russian).

3. Balonov M., Golikov V., Kalnitsky S., Zvonova I., Chipiga L., Shatskiy I., Vodovatov A. Russian practi-cal guidance on radiological support for justification of x-ray and nuclear medicine examinations. Radiat. Prot. Dosimetry, 2015, vol. 165, no. 1-4, pp. 39-42. DOI: 10.1093/rpd/ncv127.

4. Chipiga L., Bernhardsson C. Patient doses in computed tomography examinations in two regions of the Russian Federation. Radiat. Prot. Dosimetry, 2016, vol. 169, no. 1-4, pp. 240-244. doi: 10.1093/rpd/ncv516.

5. O sostoyanii sanitarno-epidemiologicheskogo blagopoluchiya naseleniya v Rossiyskoy Federatsii v 2014 godu: Gosudarstvennyy doklad [On the state of sanitary and epidemiological welfare of the population in the Russian Federation in 2014: State report]. Moscow, Federal Service for Supervision of Consumer Rights Protection and Human Welfare, 2015, pp. 56-65.

6. European Guidelines on Quality Criteria for CT: EUR 16262. Available at: en/publication-detail/-/publication/d229c9e1-a967-49de-b169-59ee68605f1a (Accessed 25.01.2019).

7. Ioniziruyushcheye izlucheniye, radiatsionnaya bezopasnost'. Primeneniye referentnykh diagnosticheskikh urovney dlya optimizatsii radiatsionnoy zashchity patsiyenta v rentgenologicheskikh issledovaniyakh obshchego naznacheniya. Metodicheskiye rekomendatsii [Ionizing radiation, radiation safety. The use of reference diagnostic levels to optimize the radiation protection of the patient in general radiology. Methodical recommendations. MR 2.6.1]. Moscow, Rospotrebnadzor, 2012.

8. Vodovatov A.V., Kalnitsky S.A., Balonov M.I., Kamyshanskaja I.G. Development of diagnostic reference levels (DRL) of patients X-ray exposure in diagnostic radiology. Radiatsionnaya gigiena – Radiation Hygiene, 2013, vol. 6, no. 3, pp. 29-36. (In Russian).

9. Vodovatov A.V., Balonov M.I., Golikov V.Yu., Shatsky I.G., Chipiga L.A., Bernhardsson C. Proposals for the establishment of national diagnostic reference levels for radiography for adult patients based on regional dose surveys in Russian Federation. Radiat. Prot. Dosimetry, 2017, vol. 173, no. 1-3, pp. 223-232. DOI: 10.1093/rpd/ncw341.

10. BEIR VII. Committee on the Biological Effects of Ionizing Radiation. Biological Effects of Ionizing Radiation: Health Risks from Exposure to Low Levels of Ionizing Radiation. Washington DC, National Academies Press, 2005.

11. Matkevich E.I., Sinitsyn V.E., Zelikman M.I., Kruchinin S.A., Ivanov I.V. Main directions of reducing patient irradiation doses in computed tomography. Rossiyskiy elektronnyy zhurnal luchevoy diagnostiki – Russian Electronic Journal of Radiology (REJR), 2018, vol. 8, no. 3, pp. 60-73. DOI: 10.21569/2222-7415-2018-8-3-60-73. (In Russian).

12. Hayton A., Wallace A., Marks P., Edmonds K., Tingey D., Johnston P. Australian diagnostic reference levels for multi detector computed tomography. Australas. Phys. Eng. Sci. Med., 2013, vol. 36, no. 1, pp. 19-26. DOI: 10.1007/s13246-013-0180-6.

13. Tsalafoutas I.A., Koukourakis G.V. Patient dose considerations in computed tomography examinations. World J. Radiol., 2010, vol. 2, no. 7, pp. 262-268. DOI: 10.4329/wjr.v2.i7.262.

14. Van der Molen A.J., Schilham A., Stoop P., Prokop M., Geleijns J. National survey on radiation dose in CT in the Netherlands. Insights Imaging 2013, vol. 4, no. 3, pp. 383-390. DOI: 10.1007/s13244-013-0253-9.

15. Röntgenanwendungen Referenzwerte. A.25. Diagnostische Referenzwerte für diagnostische und interventionelle Röntgenanwendungen (RS-Handbuch) [Electronic resource]. 22 Juni 2016 (BAnz AT 15.07.2016 B8). Available at: referenzwerte/referenzwerte_node.html (Accessed 25.01.2019).

16. Tsapaki V., Aldrich J.E., Sharma R., Staniszewska M.A., Krisanachinda A., Rehani M., Hufton A., Triantopoulou C., Maniatis P.N., Papailiou J., Prokop M. Dose reduction in CT while maintaining diagnostic confidence: diagnostic reference levels at routine head, chest, and abdominal CT-IAEA-coordinated research project. Radiology, 2006, vol. 240, no. 3, pp. 828-834. DOI: 10.1148/radiol.2403050993.

17. Zelikman M.I., Kruchinin S.A. Comparative analysis of different methods of evaluation of effective dose of x-ray computer tomographs. Biomedical Engineering, 2009, vol. 43, no. 5, pp. 200-204. DOI: 10.1007/s10527-010-9124-6.

18. Burashov V.V., Zelikman M.I., Kruchinin S.A. Features of effective dose evaluation when using multislice spiral computed tomography. Rossiyskiy elektronnyy zhurnal luchevoy diagnostiki – Russian Electronic Journal of Radiology (REJR), 2012, vol. 2, no. 4, pp. 30-36. (In Russian).

19. Matkevich E.I., Sinitsyn V.E., Ivanov I.V. Napravleniya optimizatsii luchevoy nagruzki pri komp'yuternoy tomografii [Optimization of radiation exposure in computed tomography]. Moscow, Voronezh, Elist Publ., 2018. 200 p. (In Russian).

20. Goldschmidt F., De Gelder P., Beraha D. An approach to knowledge management for EUROSAFE projects. EUROSAFE 2005 «Safety Improvements – Reasons, Strategies, Implementation». Brussels, 2005, Sem. 2.

21. Ioniziruyushcheye izlucheniye, radiatsionnaya bezopasnost'. Kontrol' effektivnykh doz oblucheniya patsiyentov pri provedenii meditsinskikh rentgenologicheskikh issledovaniy: Metodicheskiye ukazaniya [Methodical instructions Ionizing radiation, radiation safety. Monitoring of effective radiation doses of patients during medical X-ray studies (MI 2.6.1)]. Moscow, Rospotrebnadzor, 2011. (In Russian).

Full-text article (in Russian)