Identification of markers of occupational combined radiation exposure using a molecular cytogenetic mFISH technique

«Radiation and Risk», 2016, vol. 25, No. 3, pp.104-113

DOI: 10.21870/0131-3878-2016-25-3-104-113

Authors

Sotnik N.V. – Head of Group. Southern Urals Biophysics Institute, FMBA, Ozersk, Russia.
Azizova T.V. – Deputy Director, Head of Dep., C. Sc., Med. Southern Urals Biophysics Institute, FMBA, Ozersk, Russia. Contacts: 19 Ozersk road, Ozersk, Chelyabinsk region, Russia, 456780. Tel.: 8 (35130) 2-91-90; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. .

Abstract

The present study was aimed to analyze damages of chromosome structures in Mayak PA workers occupationally exposed to combined radiation using an up-to-date molecular cytogenetic mFISH technique. The study of chromosome spreads showed that the stable chromosome aberration frequency in the group of workers exposed to external gamma-rays at cumulative absorbed red bone marrow (RBM) doses exceeding 0.2 Gy was significantly increased compared to the stable chromosome aberration frequency in the group of workers exposed at doses below 0.2 Gy due to the increased level of translocations which are a biological marker of external radiation exposure. The frequency of stable chromosome aberrations was significantly higher in the group of workers with 239Pu body burden exceeding 1.48 kBq due to a considerable number of cells carrying complex chromosome rearrangements. We observed linear associations of translocation frequency with absorbed RBM dose from external gamma-rays and of complex chromosome rearrangement level with 239Pu body burden. The frequency of chromosome aberrations (translocations and complex chromosome rearrangements) revealed by mFISH technique was shown to be an effective biological indicator for combined radiation exposure.

Key words
chromosomal aberrations, Mayak PA workers, mixed exposure, 239Pu, external gamma-rays, internal alpha-exposure, mFISH, translocation, complex chromosomal rearrangements, bioindication.

References

1. International Atomic Energy Agency. Cytogenetic Dosimetry: Applications in Preparedness for and Response to Radiation Emergencies. Vienna, IAEA, 2011. 247 p.

2. Anderson R.M., Marsden S.J., Wright E.G., Kadhim M.A., Goodhead D.T., Griffin C.S. Complex chromosome aberrations in peripheral blood lymphocytes as a potential biomarker of exposure to high-LET alpha-particles. Int. J. Radiat. Biol., 2000, vol. 76, no. 1, pp. 31-42.

3. Anderson R.M., Marsden S.J., Paice S.J., Bristoe A.E., Kadhim M.A., Griffin C.S., Goodhead D.T. Transmissible and non-transmissible complex chromosome aberrations characterized by three-color and mFISH define a biomarker of exposure to high-LET alpha particles. Radiat. Res., 2003, vol. 159, no. 1, pp. 40-48.

4. Moquet J.E., Fernandez J.L., Edwards A.A., Lloyd D.C. Lymphocyte chromosomal aberrations and their complexity induced in vitro by plutonium-239 alpha-particles and detected by FISH. Cell. Mol. Biol. (Noisy-le-grand), 2001, vol. 47, no 3, pp. 549-556.

5. Barquinero F., Stephan G., Schmid E. Effect of americium-241 -particles on the dose response of chromosome aberrations in human lymphocytes analysed by fluorescence in situ hybridization. Int. J. Radiat. Biol., 2004, vol. 80, no. 2. pp. 155-164.

6. Okladnikova N.D., Osovets S.V., Kudryavtseva T.I. 239Pu and chromosomal aberrations in human peripheral blood lymphocytes. Radiatsionnaya biologiya. Radioekologiya – Radiation Biology. Radioecology, 2009, vol. 49, no 4, pp. 407-411. (In Russian).

7. Tawn E.J., Whitehouse C.A. Chromosome intra- and inter-changes determined by G-banding in radiation workers with in vivo exposure to plutonium. J. Radiol. Prot., 2005, vol. 25, no. 1. pp. 83-88.

8. Curwen G.B., Tawn E.J, Cadwell K.K., Guyatt L., Thompson J., Hill M.A. mFISH analysis of chromosome aberrations induced in vitro by -particle radiation: examination of dose-response relationships. Radiat. Res., 2012, vol. 178, no. 5, pp. 414-424.

9. Speicher M.R., Ballard S.G., Ward D.C. Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat. Genet., 1996, vol. 12, no. 4, pp. 368-375.

10. Chudoba I., Plesch A., Lorch T., Claussen U., Senger G. High resolution multicolor-banding: a new technique for refined FISH analysis of human chromosomes. Cytogenet. Cell. genet., 1999, vol. 84, no. 3-4, pp. 156-160.

11. Sotnik N.V., Osovets S.V., Scherthan H., Azizova T.V. mFISH analysis of chromosome aberrations in workers occupationally exposed to mixed radiation. Radiat. Environ. Biophys., 2014, vol. 53, no. 2, pp. 347-354.

12. Sigurdson A., Ha M., Hauptmann M., Bhatti P., Sram R.J., Beskid O., Tawn E.J., Whitehouse C.A., Lindholm C., Nakano M., Kodama Y., Nakamura N., Vorobtsova I., Oestreicher U., Stephan G., Yong L.C., Bauchinger M., Schmid E., Chung H.W., Darroudi F., Roy L., Voisin P., Barquinero J.F., Livingston G., Blakey D., Hayata I., Zhang W., Wang C., Bennett L.M., Littlefield L.G., Edwards A.A., Kleinerman R.A., Tucker J.D. International study of factors affecting human chromosome translocations. Mutat. Res., 2008, vol. 652, no. 2, pp. 112-121.

13. Ainsbury E.A., Bakhanova E., Barquinero J.F., Brai M., Chumak V., Correcher V., Darroudi F., Fattibene P., Gruel G., Guclu I., Horn S., Jaworska A., Kulka U., Lindholm C., Lloyd D., Longo A., Marrale M., Monteiro Gil O., Oestreicher U., Pajic J., Rakic B., Romm H., Trompier F., Veronese I., Voisin P., Vral A., Whitehouse C.A., Wieser A., Woda C., Wojcik A., Rothkamm K. Review of retrospective dosimetry techniques for external ionising radiation exposures. Radiat. Prot. Dosim., 2009, vol. 147, no. 4, pp. 573-592.

14. Tucker J.D., Luckinbill L.S. Estimating the lowest detectable dose of ionizing radiation by FISH wholechromosome painting. Radiat. Res., 2011, vol. 175, no. 5, pp. 631-637.

15. Bhatti P., Yong L.C., Doody M.M., Preston D.L., Kampa D.M., Ramsey M.J., Ward E.M., Edwards A.A., Ron E., Tucker J.D., Sigurdson A.J. Diagnostic X-ray examinations and increased chromosome translocations: evidence from three studies. Radiat. Environ. Biophys., 2011, vol. 49, no. 4, pp. 685-692.

16. Aseeva E.A., Snigireva G.P., Neverova A.L., Novitskaia N.N., Khazins E.D., Domracheva E.V. The multiabberant cells in groups of people exposed to radiation due to different situations and their possible biological part. Radiatsionnaya biologiya. Radioekologiya – Radiation Biology. Radioecology, 2009, vol. 49, no. 5, pp. 552-562. (In Russian).

17. Hande M.P., Azizova T.V., Burak L.E., Khokhryakov V.F., Geard C.R., Brenner D.J. Complex chromosome aberrations persist in individuals many years after occupational exposure to densely ionizing radiation: an mFISH study. Gene Chromosome Canc., 2005, vol. 44, no. 1, pp. 1-9.

18. Wu H., Durante M., Furusawa Y. Truly incomplete and complex exchanges in prematurely condensed chromosomes of human fibroblasts exposed in vitro to energetic heavy ions. Radiat. Res., 2003, vol. 160, no. 4, pp. 418-424. 19. Durante M., Ando K., Furusawa Y., Obe G., Gearge K., Cucinotta F.A. Complex chromosomal rearrangements induced in vivo by heavy ions. Cytogenet. Genome Res., 2004, vol. 104, no. 1-4, pp. 240-244.

Full-text article (in Russian)