Method for identification of high-risk groups among people exposed to radiation as a consequences of the Chernobyl accident

«Radiation and Risk», 2016, vol. 25, No. 2, pp.20-42

Authors

Ivanov V.K. – Deputy Director, Chairman of RSCRP, Corresponding Member of RAS. A. Tsyb MRRC, Obninsk, Russia.
Meniailo A.N. – Senior Researcher, C. Sc., Biol. A. Tsyb MRRC, Obninsk, Russia. Contacts: 4 Korolyov str., Obninsk, Kaluga region, Russia, 249036. Tel.: (484) 399-32-81; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. .
Kashcheev V.V. – Head of Lab., C. Sc., Biol. A. Tsyb MRRC, Obninsk, Russia.
Chekin S.Yu. – Head of Lab. A. Tsyb MRRC, Obninsk, Russia.
Maksioutov M.A. – Head of Lab., C. Sc., Tech. A. Tsyb MRRC, Obninsk, Russia.
Tumanov K.А. – Head of Lab., C. Sc., Biol. A. Tsyb MRRC, Obninsk, Russia.
Korelo A.M. – Senior Researcher. A. Tsyb MRRC, Obninsk, Russia.
Kochergina E.V. – Head of Lab., C. Sc., Med. A. Tsyb MRRC, Obninsk, Russia.
Vlasov O.K. – Head of Lab., D.Sc., Tech. A. Tsyb MRRC, Obninsk, Russia.
Shchukina N.V. – Senior Researcher. A. Tsyb MRRC, Obninsk, Russia.
Karpenko S.V. – Engineer. A. Tsyb MRRC, Obninsk, Russia.
Lovachev S.S. – Research Assistant. A. Tsyb MRRC, Obninsk, Russia.


Abstract

Identifying group of radiation risk of people exposed to radiation is the key area of focus for the National Radiation Epidemiological Registry (NRER) to be undertaken for execution of the Federal Law No 329-FZ of December 30, 2012. At present time initial medical and dosimetry information on more than 700 thousand people exposed to radiation as a consequence of the Chernobyl accident is stored in the Registry. The cohort composed of Chernobyl clean-up workers received the highest radiation doses. In the present study life-time risk of cancer and cerebrovascular diseases to clean-up workers operated in the Chernobyl exclusion zone in 1986 and 1987 were calculated. The size of the cohort under study was 74 thousand people, the average dose of γ-radiation – 132 mGy. For estimating radiation risks models recommended by the International Commission on Radiological Protection (ICRP) to justify international standards of radiation safety and those designed at the NRER to estimate radiation risks to the cohort of Russian cleanup workers were used. The method for identifying groups of radiation risk based on life-time attributable risk fraction was designed. In compliance with international standards and regulations a group of high risk was composed of clean-up workers with individual life-time attributable risk fraction (LARF) estimates calculated with ICRP recommended and NRER-designed models exceeded 10%. The groups of high risk of cancer and cerebrovascular diseases identified with the use of the designed method consisted 6.5% and no more than 4.5% of the cohort members respectively. Presented results illustrate the applicability of the designed method for identification the groups of people exposed to radiation who should get appropriate health care in the first turn.

Key words
Chernobyl NPP, radiation risk, high-risk groups, cohort of liquidators, cancer diseases, cerebrovascular diseases, baseline incidence, excess absolute risk (EAR), excess relative risk (ERR), life-time attributable risk fraction (LARF).

References

1. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Annals of the ICRP, 2007, vol. 37, no. 2-4. Ed.: Valentin J. Elsevier, 2007. 332 p.

2. Preston D.L., Ron E., Tokuoka S., Funamoto S., Nishi N., Soda M., Mabuchi K., Kodama K. Solid can-cer incidence in atomic bomb survivors: 1958-1998. Radiat. Res., 2007, vol. 168, no. 1, pp. 1-64.

3. Preston D.L., Kusumi S., Tomonaga M., Izumi S., Ron E., Kuramoto A., Kamada N., Dohy H., Matsuo T., Nonaka H., Thompson D.E., Soda M., Mabuchi K. Cancer incidence in atomic bomb survivors. Part III: Leukemia, lymphoma and multiple myeloma, 1950-1987. Radiat. Res., 1994, vol. 137, pp. 68-97.

4. Kashcheev V.V., Chekin S.Yu., Maksioutov M.A., Tumanov K.A., Kochergina E.V., Kashcheeva P.V., Shchukina N.V., Ivanov V.K. Incidence and mortality of solid cancer among emergency workers of the Chernobyl accident: assessment of radiation risks for the follow-up period of 1992-2009. Radiat. Environ. Biophys., 2015, vol. 54, no. 1, pp. 13-23. doi: 10.1007/s00411-014-0572-3.

5. Ivanov V.K., Tsyb A.F., Khait S.E., Kashcheev V.V., Chekin S.Yu., Maksioutov M.A., Tumanov K.A. Leukemia incidence in the Russian cohort of Chernobyl emergency workers. Radiat. Environ. Biophys., 2012, vol. 51, no. 2, pp. 143-9. doi: 10.1007/s00411-011-0400-y.

6. Kashcheev V.V., Chekin S.Yu., Maksioutov M.A., Tumanov K.A., Menyaylo A.N., Kochergina E.V., Kashcheeva P.V., Gorsky A.I., Shchukina N.V., Karpenko S.М., Ivanov V.K. Radiation-epidemiological study of cerebrovascular diseases in the cohort of Russian recovery operation workers of the Chernobyl ac-cident. Health Physics, 2016 (in press).

7. Malignant neoplasms in Russia in 2013 (morbidity and mortality). Reference book. Eds.: Kaprin A.D., Starinskiy V.V., Petrova G.V. Moscow, 2015. (In Russian).

8. WHO. Health statistics and information systems. Available at: URL: http://www.who.int/healthinfo/statistics/mortality_rawdata/en/ (accessed 15.04.2015).

9. Approaches to attribution of detrimental health effects to occupational ionizing radiation exposure and their application in compensation programmes for cancer: A practical guide. Eds.: S. Niu, P. Deboodt, H. Zeeb; jointly prepared by the International Atomic Energy Agency, the International Labour Organization and the World Health Organization. Geneva, ILO, 2010 (Occupational Safety and Health Series, No. 73). ISBN (print) 978-92-2-122413-6. ISBN (web pdf) 978-92-2-122414-3.

Full-text article (in Russian)