The biodosimetry assessment of whole body exposure after administration of iodine therapy to differentiated thyroid cancer patients

«Radiation and Risk», 2015, vol. 24, No. 4, pp.62-73


Khvostunov I.K. – Head of Lab., D. Sc., Biol. A. Tsyb MRRC, Obninsk, Russia. Contacts: 4 Korolyov str., Obninsk, Kaluga region, Russia, 249036. Tel.: (484) 399-73-92; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. .
Krylov V.V. – Head of Dep., MD. A. Tsyb MRRC, Obninsk, Russia.
Rodichev A.A. – Oncologist, C. Sc., Med. A. Tsyb MRRC, Obninsk, Russia.
Shepel N.N. – Senior Researcher, C. Sc., Biol. A. Tsyb MRRC, Obninsk, Russia.
Korovchuk O.N. – Res. Assistant. A. Tsyb MRRC, Obninsk, Russia.


The radioiodine therapy administration is one of the most important approaches for a treatment a differentiated thyroid cancer. The clinic efficiency of radioiodine therapy has been proved for locally advanced cancer and for metastases in lymph nodes when such therapy is exclusive treatment mode. However the benefits and risks of radioiodine therapy have been a subject of contributing controversy. The investigation of a whole body internal exposure after radioiodine therapy is necessary for further improvement quality of therapy planning, forecast amendment and estimation of possible side effects. This study aimed to develop a new method of estimation and analysis of negative side effects resulted from additional human body exposure after radioiodine therapy administrated to patients with differentiated thyroid cancer. Such negative side effects have been studied using a cytogenetic analysis of radiation induced chromosomal aberrations in peripheral blood lymphocytes of patients with differentiated thyroid cancer. The study group comprised physicians and thyroid cancer patients was examined. It was found cytogenetic dose ranged 0-0.2 Gy (0.12 averaged) for physicians and 0.28-0.48 Gy (0.36 Gy averaged) for patients.

Key words
radioiodine 131I, thyroid cancer, ablation, metastasis, internal exposure, whole body dose, biological dosimetry, chromosomal aberrations, dicentrics, blood lymphocytes


1. Krylov V.V., Garbuzov P.I., Drozdovskiy B.Ya., Rodichev A.A., Timokhina O.V., Podol'khova N.V., Shurinov A.Yu. Radionuklidnaya terapiya v onkologii. V kn.: Terapevticheskaya radiologiya. Rukovodstvo dlya vrachey [Radionuclide Therapy in Oncology. In: Therapeutic Radiology. Clinical guidance]. Ed.: Tsyb A.F., Mardynskiy Yu.S. Moscow, 2010, pp. 383-407.

2. Rodichev A.A., Garbuzov P.I., Drozdovskiy B.Ya., Krylov V.V., Guseva T.N., Davydov G.A., Parshin V.S., Il'in A.A., Chebotareva I.V. Dvadtsatiletniy opyt radioyodterapii otdalennykh metastazov differentsirovannogo raka shchitovidnoy zhelezy u detey i podrostkov [Twenty year clinical practice for radio-iodine treatment of distant metastases of differentiated thyroid cancer in children and adolescent]. Vestnik RONTs im. N.N. Blokhina RAMN – Journal of N.N. Blokhin Russian Cancer Research Center, RAMS, 2009, vol. 20, № S2, pp. 19-20.

3. Cytogenetic dosimetry: applications in preparedness for and response to radiation emergencies. International Atomic Energy Agency. Vienna, IAEA-EPR, 2011. 229 p.

4. Edwards A.A., Lloyd D.C., Purrott R.J. Radiation induced chromosome aberrations and the Poisson distri-bution. Radiat. and Environm. Biophys., 1979, vol.16, no. 2, pp. 89-100.

5. Sevan'kaev A.V., Khvostunov I.K., Snigiryova G.P., Novickaya N.N., Antoshchina M.M., Fesenko E.V., Vorobcova I.E., Neronova E.G., Domracheva E.V., Nugis V.Yu., Govorun R.D., Handogina E.K. Sravnitel'nyj analiz rezul'tatov citogeneticheskih obsledovanij kontrol'nyh grupp lic v razlichnyh otechestvennyh laboratoriyah [Comparative analysis of cytogenetic examination of control groups of sub-jects carried out in different Russian laboratories]. Radiatsionnaya biologiya. Radioekologiya – Radiation Biology. Radioecology, 2013, vol. 53, no. 1, pp. 5-24.

6. Khvostunov I.K., Pyatenko V.S., Shepel' N.N., Korovchuk O.N., Golub E.V., Zhironkina A.S., Khvostunova T.I., Lychagin A.A. Analiz hromosomnyh aberracij v kletkah mlekopitayushchih pri vozdejstvii razlichnyh vidov ioniziruyushchego izlucheniya [Analysis of chromosome aberrations induced in mammalian cells after exposure to different types of ionizing radiation]. Radiatsiya i Risk – Radiation and Risk, 2013, vol. 22, no. 4, pp. 42-59.

7. Kalistratova V.S., Belyaev I.K., Zhorova E.S., Nisimov P.G., Parfenova I.M., Tishchenko G.S., Capkov M.M. Radiobiologiya inkorporirovannyh radionuklidov [Radiobiology of Incorporated Radionuclides]. Ed.: Kalistratova V.S. Moscow, 2012. 464 p.

8. Brill A.B., Stabin M., Bouville A., Ron E. Normal organ radiation dosimetry and associated uncertainties in nuclear medicine, with emphasis on Iodine-131. Radiat. Res., 2006, vol. 166, no. 1, pp. 128-140.

9. Watanabe N., Kanegane H., Kinuya S., Shuke N., Yokoyama K., Kato H., Tomizawa G., Shimizu M., Funada H., Seto H. The radiotoxicity of 131-I therapy of thyroid cancer: assessment by micronucleus assay of B lymphocytes. J. Nucl. Med., 2004, vol. 45, no. 4, pp. 608-611.

10. M'Kacher R., Legal J.-D., Schlumberger M., Aubert B., Beron-Gaillard N., Gaussen A., Parmentier C. Sequential biological dosimetry after a single treatment with iodine-131 for differentiated thyroid carcinoma. J. Nucl. Med., 1997, vol. 38, no.3, pp. 377-380.

11. Robbins R.J., Schlumberger M.J. The evolving role of 131-I for the treatment of differentiated thyroid carcinoma. J. Nucl. Med., 2005, vol. 46, no. 1. Suppl., P. 28S–37S.

12. Benua R.S., Leeper R.D. A method and rationale for treating thyroid carcinoma with the largest safe dose of I-131. In: Frontiers of Thyroidology. Eds.: Meideros-Neto G.A., Gaitan E. Vol. II. New York, Plenum, 1986, pp. 1317-1321.

13. Yoriyaz H., Stabin M.G., dos Santos A. Monte Carlo MCNP-4B-based absorbed dose distribution estimates for patient-specific dosimetry. J. Nucl. Med., 2001, vol. 42, no. 4, pp. 662-669.

14. Dorn R., Kopp J., Vogt H., Heidenreich P., Carroll R.G., Gulec S.A. Dosimetry-guided radioactive iodine treatment in patients with metastatic differentiated thyroid cancer: largest safe dose using a risk-adapted ap-proach. J. Nucl. Med., 2003, vol. 44, no. 3, pp. 451-456.

15. Guenter H.-H., Schober O., Schwarzrock R., Hundeshagen H. Hematologic long- time modifications after radioiodine therapy of the carcinoma of the thyroid gland. II. Modifications of the bone marrow including leukemia. Strahlenther Onkol., 1987, vol. 163, no. 7, pp. 475-485.

16. Willegaignon J., Ribeiro V.P.B., Sapienza M., Ono C., Watanabe T., Buchpiguel C. Is it necessary to reduce the radioiodine dose in patients with thyroid cancer and renal failure? Arq. Bras. Endocrinol. Metab., 2010, vol. 54, no. 4, pp. 413-418.

Full-text article (in Russian)