Calculation of equivalent doses to organs and tissues, as well as lifetime attributable risk from typical computed tomography imaging

«Radiation and Risk», 2013, vol. 22, No. 3, pp.8-20

Authors

Kashcheev V.V. – Senior Researcher, C. Sc., Biol., Medical Radiological Research Center of the Russian Ministry of Health, Obninsk. Contacts: 4 Korolyov str., Obninsk, Kaluga region, Russia, 249036. Tel.: (48439) 9-32-47; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. .
Pryakhin E.A. – Postgraduate Student, Medical Radiological Research Center of the Russian Ministry of Health, Obninsk.
Menyaylo A.N.
– Research Assistant, Medical Radiological Research Center of the Russian Ministry of Health, Obninsk.
Chekin S.Yu.
– Senior Researcher, Medical Radiological Research Center of the Russian Ministry of Health, Obninsk.
Ivanov V.K.
– Chairman of RSCRP, Deputy Director, Corresponding Member of RAMS, Medical Radiological Research Center of the Russian Ministry of Health, Obninsk.

Abstract

Calculation of equivalent doses to organs and tissues, as well as lifetime attributable risk from typical computed tomography imaging is given in the article. Dose-length product (DLP) as a measure of absorbed dose was used for estimating organ doses. Coefficients for conversion of DLP for CT scans of thoracic, abdominal and head organs to equivalent doses were determined. Risks of radiation-induced cancer from computed tomography in relation to age and sex were estimated. Lifetime attributable risk of cancer was estimated with ICRP models (Publication 103) and medico-demographic parameters of the Russian population. The risk estimated using organ doses, which were calculated with the use of DLP, was compared with the risk estimated with organ doses measured using silicone photodiode dosimeters.

Key words
Radiation risk, medical exposure, computed tomography, organ doses, DLP.

References

1. Zlokachestvennye novoobrazovaniia v Rossii v 2008 g. (zabolevaemost' i smertnost'): spravochnik /pod red. akademika RAMN V.I.Chissova, professora V.V.Starinskogo. Moscow: 2010.
2. Ivanov V.K., Kashcheev V.V., Chekin S.Iu., Meniailo A.N., Priakhin E.A., Tsyb A.F., Mettler F.A. Ogranichenie ispol'zovaniia effektivnoi dozy v otsenke riska meditsinskogo oblucheniiaю ANRI, 2012, no. 3(70), pp. 35-44.
3. Ivanov V.K., Meniailo A.N., Kashcheev V.V., Chekin S.Iu., Gorskii A.I., Maksiutov M.A., Tumanov K.A. Sravnitel'nyi analiz sovremennykh modelei otsenki radiatsionnykh riskov MKRZ i NKDAR OON. ANRI, 2011, no. 3(66), pp. 18-29.
4. Ivanov V.K., Tsyb A.F., Metler F.A., Meniailo A.N., Kashcheev V.V. Radiatsionnye riski meditsinskogo oblucheniia. Radiatsiia i risk, 2011, vol. 20, no. 2, pp. 17-28.
5. Kontrol' effektivnykh doz oblucheniia patsientov pri provedenii meditsinskikh rentgenologicheskikh issledovanii: metodicheskie ukazaniia. Moscow: Federal'nyi tsentr gigieny i epidemiologii Rospotrebnadzora, 2011. 38 p.
6. Normy radiatsionnoi bezopasnosti (NRB-99/2009). Sanitarno-epidemiologicheskie pravila i normativy. Moscow: Federal'nyi tsentr gigieny i epidemiologii Rospotrebnadzora, 2009. 100 p.
7. SP 2.6.1.2612-10. Osnovnye sanitarnye pravila obespecheniia radiatsionnoi bezopasnosti (OSPORB-99/2010). Sanitarnye pravila. Moscow: Tsentr sanitarno- epidemiologicheskogo normirovaniia, gigienicheskoi sertifikatsii Minzdrava Rossii, 2010.
8. Fujii K., Aoyama T., Yamauchi-Kawaura C., Koyama S., Yamauchi M., Ko S., Akahane K., Nishizawa K. Radiation dose evaluation in 64-slice CT examinations with adults and paediatric anthrepomorphic phantoms. Br. J. Radiol., 2009, vol. 82, pp. 1010-1018.
9. http://www.xrayrisk.com.
10.IAEA Safety Standards. Radiation protection and safety of radiation sources: International Basic Safety Standards, General Safety Requirements, No. GSR, Part 3 (Interim). Vienna: IAEA, 2011.
11.Ivanov V.K., Kashcheev V.V., Chekin S.Yu., Menyaylo A.N., Pryakhin E.A., Tsyb A.F., Mettler F.A. Estimation of risk from medical radiation exposure based on effective and organ dose: how much difference is there? Radiat. Prot. Dosimetry., 2013, vol. 155, no. 3, pp. 317-328.
12. Ivanov V.K., Tsyb A.F., Mettler F.A., Menyaylo A.N., Kashcheev V.V. Methodology for estimating cancer risks of diagnostic medical exposure: with an example of the risks associated with computed tomography. Health Phys., 2012, vol. 103, no. 6, pp. 732-739.
13. Jessen K.A., Panzer W., Shrimpton P.C. et al. EUR 16262: European Guidelines on Quality Criteria for Computed Tomography. Paper presented at: Office for Official Publications of the European Communities; Luxembourg, 2000.
14. Preston D.L., Kusumi S., Tomonaga M., Izumi S., Ron E., Kuramoto A., Kamada N., Dohy H., Matsuo T., Nonaka H., Thompson D.E., Soda M., Mabuchi K. Cancer incidence in atomic bomb survivors. Part III: Leukemia, lymphoma and multiple myeloma, 1950-1987. Radiat. Res., 1994, vol. 137, pp. 68-97.
15. Radiological Protection in Medicine. ICRP Publication 105 Annals of the ICRP., 2007, vol. 37, no. 8.
16. Shrimpton P.C., Hillier M.C., Lewis M.A., Dunn M. National survey of doses from CT in the UK: 2003.
Br. J. Radiol., 2006, vol. 79, no. 948, pp. 968-980.
17. Stamm G., Nagel H.D. CT-expo: a novel program for dose evaluation in CT. Rofo., 2002, vol. 174, pp. 1570-1576 (in German).
18. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Annals of the ICRP., 2007, vol. 37, no. 2-4. Elsevier, 2007. 332 p

Full-text article (in Russian)