Analysis of chromosome aberrations and micronucleus in the descendants of Chinese hamster cells, irradiated at various doses and intensities of gamma-radiation

«Radiation and Risk», 2006, vol. 15, no. 1-2, pp.114-120

Authors

Ryabchenko N.I., Antoschina M.M., Nasonova V.A., Fesenko E.V.
Medical Radiological Research Center of RAMS, Obninsk.

Abstract

The Chinese hamster cells V-79 were irradiated by γ-rays in doses 0.5 Gy and 3 Gy at dose rate of 0.48 Gy/min (an acute irradiation) and in dose 0.5 Gy at dose rate of 0.0485 мGy/min (a prolonged irradiation). The acute and prolonged irradiation in a dose 0.5 Gy enlarges frequency of appearance of micronucleus. Subsequent cultivation of the irradiated cells during 20 generations enlarges frequency of micronucleus, and for a prolonged irradiation the boosted frequency of micronucleus is saved during 40-60 generations. After an acute irradiation the number of micronucleus starts to be reduced after 20 generations. An acute and prolonged irradiating in a dose 0.5 Gy enlarge frequency of chromosome aberrations at once after an irradiating, which is gradually reduced up to a control level to 20 generating. The irradiating in a dose 3 Gy enlarges frequency of chromosome aberrations at once after an irradiating, which is reduced up to a control level to 20 generating, then increases to 40-th generating and remains at this level before 60-th generating.

Key words
γ-rays, prolonged irradiation, frequency of appearance of micronuclei and chromosomal aberrations, cultivation of irradiated cells, acute irradiation.

References

1. Little J.B .. Int. J. Radiat. Biol. 1998. Vol.74, no.6. PP. 663-671.

2. Wright E.G .. Med. Confl. Surviv. 2000. Vol.16, no.1. PP. 117-133.

3. Mazurik VK, Mikhailov VF Radiation Biology. Radioecology. 2001. Vol. 41, no. 3. P. 272-289.

4. Gotlib V.Ya., Toponainen N.Ya., Pelevina I.I. Radiobiology. 1985. Vol. 25, Issue. 4. PP. 435-443.

5. Jamali M., Trott K.R. Int. J. Radiat. Biol. 1996. Vol.70, no.6. P. 705-709.

6. Kadhim M.A., Marsdeno.S. J., Wright E.G. Int. J. Radiat. Biol. 1998. Vol.73, no.2. PP. 143-148.

7. Pelevina II, Gotlib V.Ya., Kudryashova O.V. et al. Ontogeny. 2001. Vol. 32, no. 1. PP. 51-57.

8. Ponnaiya B., Cornforth M.N., Ullrich R.L. Radiat. Res. 1997. Vol.147, no.3. PP. 288-294.

9. Sobatier L., Lebeau J., Pommier J.P. et al. Radiat. Res. Congress Proc. 1995. Vol.2. PP. 509-512.

10. Biological Effects at Low Radiationo.Doses Models. Mechanisms and Uncertainties. Report to General Assembly. 48 sessiono of UNSCEAR. Vienna, 12-16 April, 1999.

11. Antoschina M.M., Ryabchenko N.I., Nasonova V.A. et al. Radiation Biology. Radioecology. 2005. Vol. 45. No. 3. PP. 291-293.

12. Pelevina I.I., Aleshchenko A.V., Antoshina M.M. et al. Radiation Biology. Radioecology. 2003. Vol. 43, no. 2. PP. 161-166.

13. Heddle J.A., Carrano A.V. Mutat. Res. 1977. Vol.44, no.1. PP. 63-69.

14. Macedon G.P., ​​Tzovrebova L.V. Radiation Biology. Radioecology. 2003. Vol. 42, no. 5. PP. 469-474.

15. Sobaties L., Lebeau J., Dutrillaux B. Int. J Radiat. Biol. 1994. Vol.66, no.5. PP. 611-613.

16. Fenech M., Crott J., Turner J. et al. Mutagenesis. 1999. Vol.14, no.6. PP. 605-612.

17. Kirsch-Volders M., Vanhauwaert A., De Boeck M. et al. Mutat. Res. 2002. Vol.504, no. 1-2. PP. 137-148.

18. Salassidis K., Huber R., Zitzelsberger H. et al. Environ. Mol. Mutagen. 1992. Vol.19, no.1. PP. 1-6.

19. Keshava C., Ong T., Nath J .. Mutat. Res. 1995. Vol.328, no.1. PP. 63-71.

20. Ponza I., Barquinero J. F., Egozcue J. et al. Radiat. Res. 2001. Vol.155, no.3. PP. 424-431.

Full-text article (in Russian)