Model of age-dependent cancer morbidity as corollary fact of Cohnheim's hypothesis and random tumor growth

«Radiation and Risk», 2009, vol. 18, no. 2, pp.21-47


Kaidalov O.V. – Lead Research Assistant, Cand.Sc., Phys.-Math. Medical Radiological Research Center of the Russian Academy of Medical Sciences, Obninsk. Contacts: 4 Korolev str., Obninsk, Kaluga region, Russia, 249036. Tel.: (495) 956-94-12, (48439) 9-32-47; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. .


Cohnheim's hypothesis (1875) is one of the tumorigenesis concepts. The model for development of cancer from embryonic rest cells is considered in the article. Modeling cancer morbidity in a cohort with the model allows us to explain basic regularities of age-dependent cancer morbidity and difference between the morbidity in different populations, in particular. The model allows alternative interpretation of data on cancer morbidity.

Key words: Tumorigenesis, embryonic cell, Cohnheim's hypothesis, cancer morbidity, tumor growth.


1. Gavrilov L.A., Gavrilova N.S. Biology of life expectancy. Moscow, Nauka Publ., 1991. 280 pp.

2. Molecular biology of the cell. Alberts B., Bray D., Lewis J., Raff M., Robert C., Watson J.M. Mir Publ., 1994. Vol. 3. 504 p.

3. Semiglazov V.F., Gulyaev A.V.

4. Armitage P., Doll R. The age distribution of cancer and a multi-stage theory of carcinogenesis. Br. J. Cancer. 1954. V. 8. P. 1-12.

5. Cancer Incidence in Five Continents, Vol. VIII. Parkin D.M., Whelan S.L., Ferlay J., Teppo L., Thomas D.B. eds.IARC Scientific Publications. No. 155. Lyon: IARC, 2002.

6. Huntly B.J.P., Gilliland D.G. Leukaemia stem cells and the evolution of cancer-stem-cell research. Nature Reviews Cancer. 2005. Vol. 5. PP. 311-321.

7. Li L., Neaves W.B. Normal Stem Cells and Cancer Stem Cells: The Niche Matters. Cancer Res. 2006. Vol. 66, No. 9. PP. 4553-4557.

8. Meza R., Jeon J., Moolgavkar S.H., Luebeck E.G. Age-specific incidence of cancer: Phases, transitions, and biological implications. PNAS. 2008. Vol. 105, No. 42. PP. 16284-16289.

9. Michor F., Iwasa Y., Nowak M.A. The age incidence of chronic myeloid leukemia can be explained by a one-mutation model. PNAS. 2006. V. 103, N 40. P. 14931-14934.

10. Mintz B., Illmensee K. Normal genetically mosaic mice produced from malignant teratocarcinoma cells. PNAS. 1975. Vol. 72, No. 9. PP. 3585-3589.

11. Peters R., Leyvraz S., Perey L. Apoptotic regulation in primitive hematopoietic precursors. Blood. 1998. Vol.92. PP. 2041-2052.

12. Pierce G.B., Speers W.C. Tumors as Caricatures of the Process of Tissue Renewal: Prospects for Therapy by Directing Differentiation. Cancer Research. 1988. Vol. 48. PP. 1996-2004.

13. Rizvi A.Z., Hunter J.G., Wong M.H. Gut-derived stem cells. Surgery. 2005. Vol. 137, No. 6. PP. 585-590.

14. Stem Cells Handbook. Ed. S.Sell. Totowa, NJ: Humana press Inc., 2004. p. 526.

15. Stevens L.C. The development of transplantable teratocarcinomas from intratesticular grafts of pre- and postimplantation mouse embryos. Dev. Biol. 1970. Vol. 21. PP. 364-382.

16. Yakovlev A.Yu., Hanin L.G., Rachev S.T., Tsodikov A.D. A distribution of tumor size at detection and its limiting form. PNAS. 1996. Vol. 93. PP. 6671-6675.

Full-text article (in Russian)