Crystals of natural quartz for luminescence in vivo dosimetry in nuclear medicine: experimental investigation of the dosimetric properties

Authors

Stepanenko V.F. – Head of Lab., Prof., D.Sc., Biol., A. Tsyb MRRC of A. Hertsen FMRC MH RF, Obninsk, Russia. Contacts: 4 Korolyov str., Obninsk, Kaluga region, Russia, 249036. Tel.: +7 (484) 399-70-02, e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.
Petukhov A.D. – Researcher, A. Tsyb MRRC of A. Hertsen FMRC MH RF, Obninsk, Russia.
Kolyzhenkov T.V. – Senior Researcher, C. Sc., Biol., A. Tsyb MRRC of A. Hertsen FMRC MH RF, Obninsk, Russia.
Dubov D.V. – Senior Researcher, C. Sc., Biol., A. Tsyb MRRC of A. Hertsen FMRC MH RF, Obninsk, Russia.
Anokhin Yu.N. – Lead. Researcher, C. Sc., Med., A. Tsyb MRRC of A. Hertsen FMRC MH RF, Obninsk, Russia.
Rodichev A.A. – Physician-oncologist, C. Sc., Med., A. Tsyb MRRC of A. Hertsen FMRC MH RF, Obninsk, Russia.
Garbuzov P.I. – Lead. Researcher, C. Sc., Med., A. Tsyb MRRC of A. Hertsen FMRC MH RF, Obninsk, Russia.
Krylov V.V. – Head of Lab., MD., A. Tsyb MRRC of A. Hertsen FMRC MH RF, Obninsk, Russia.

Abstract

As a result of investigation of dosimetric properties of natural quartz crystals of the silica sand of the Bryansk oblast carried out by measuring intensity of luminescence caused by annealing the crystals after their exposure to ionizing radiation the following was obtained: a) in a range of radiation doses from 1 to 15 Gy linear relationship between dose and luminescence intensity was found, this shows potential use of natural quartz crystals as ionizing radiation dosimeters in the specified range of absorbed doses; b) to guaranty the reproducibility and stability of the TL signal the temperature of annealing the crystals should not exceed 450 °C, at higher temperatures the TL response as a function of the absorbed dose will depend on the temperature; c) a heating rate of 1 °C/s is optimal for natural quartz crystals, increase in heating rate up to 10 °C/s causes reduction of fluorescence intensity to 32% of its initial level; d) comparison of maximum luminescence intensity of natural quartz crystals and standard Al2O3 detector at the same annealing temperature (450 °C) and luminescence peak (~ 210 °C), as well as the same heating rate (1 °C/s), radiation sensitivity of Al2O3:C crystals is 6.7 times higher than the sensitivity of the natural quartz crystals. However, the cost of Al2O3:C detectors is hundreds times higher than the potential cost of natural quartz crystals, this is the basis for further research into the possibility of using natural quartz crystals for in vivo dosimetry in nuclear medicine; e) preferential use of luminescent natural quartz crystal-based detectors as accumulating dosimeters is determined not only by their lower price, but also by convenience of their use, i.e. placement on a patient's body, due to their small size (up to microscopic) and absence of wired connection to a recording system; f) absorbed dose from gamma component of 131I cumulated for 24 hours of irradiation of an adult physical phantom with account of radioiodine activity in the thyroid gland of 3.7·107 Bq ranges from 27±2 μGy to 89±4 μGy, depending on the localization of luminescent dosimeters on a body (forehead, maxillofacial joints, neck); g) according to data of clinical measurements the individual rate of accumulation of 131I in the thyroid and the correspondent individual cumulated dose in the organ can vary significantly, therefore the use of individual in vivo dosimetry in a course radioiodine therapy of thyroid cancer is very important.

Key words
In vivo dosimetry, natural quartz, luminescence dosimetry, thermostimulated luminescence, cumulated doses, internal radiation exposure, human phantom, nuclear medicine, thyroid cancer, radiotherapy.

References

1. AAPM American Association of Physicists in Medicine, Task Group 40 of the Radiation Therapy Committee. Comprehensive QA for Radiation Oncology (AAPM Report No. 46). Medical Physics, 1994, vol. 21, pp. 581-618.

2. IAEA 2008. Setting up a Radiotherapy Programme: Clinical, Medical Physics, Radiation Protection and Safety Aspects.Vienna, International Atomic Energy Agency, 2008.

3. IAEA 2011. Development of procedures for in vivo dosimetry in radiotherapy. Vienna, International Atomic Energy Agency, 2011.

4. Huyskens D., Bogaerts R., Verstraete J., Lööf M., Nystrom H., Fiorino C., Broggi S., Jornet N., Ribas M., Thwaites D.I. Practical Guidance for the Implementation of In Vivo Dosimetry. Physics for Clinical Radiotherapy ESTRO. Booklet no. 5.

Brussels, ESTRO, 2001.

5. Akselrod M.S., Bøtter-Jensen L., McKeever S.W.S. Optically stimulated luminescence and its use in medical dosimetry. Radiat. Meas., 2006, vol. 41, pp. 78-99.

6. Alecu R., Loomis T., Alecu J., Ochran T. Guidelines on the implementation of diode in-vivo dosimetry programs for photon and electron external beam therapy. Med. Dosim., 1999,vol. 24, pp. 5-12.

7. Aznar M.C., Andersen C.E., Bøtter-Jensen L., Bäck S.A.J., Mattsson S., Kjær-Kristoffersen F., Medin J. Realtime optical-fibre luminescence dosimetry for radiotherapy: physical characteristics and applications in photon beams. Phys. Med. Biol., 2004,vol. 49, pp. 1655-1669.

8. Bøtter-Jensen L.G., McKeever S.W.S., Wintle A.G. Optically stimulated luminescence dosimetry. Amsterdam, Elsevier, 2003.

9. Essers M., Mijnheer B.J. In vivo dosimetry during external photon beam radiotherapy. Int. J. Radiation Oncology Biol. Phys., 1999, vol. 43, pp. 245-259.

10. Jornet N., Ribas M., Eudaldo T. In vivo dosimetry: Intercomparison between p-type based and n-type based diodes for the 16-25 MV energy range. Med. Phys., 2000,vol. 27, pp. 1287-1293.

11. Jursinic P.A. Implementation of an in vivo diode dosimetry program and changes in diode characteristics over a 4-year clinical history. Med. Phys., 2001, vol. 28, pp. 1718-1726.

12. Jursinic P.A. Characterization of optically stimulated luminescent dosimeters, OSLDs, for clinical dosimetric measurements. Med. Phys., 2007, vol. 34, pp. 4594-4604.

13. Millwater C.J., MacLeod A.S., Thwaites D.I. «In vivo» semiconductor dosimetry as part of routine quality assurance. Br. J. Radiol., 1998, vol. 71, pp. 661-668.

14. Bailiff I.K., Stepanenko V. Retrospective dosimetry and dose reconstruction. Brussels-Luxembourg, ECSC-EC-EAEC, 1996. 115 p.

15. Bailiff I.K., Stepanenko V.F., Göksu H.Y., Bøtter-Jensen L., Brodski L., Chumak V., Correcher V., Delgado A., Golikov V., Jungner H., Khamidova L.G., Kolizshenkov T.V., Likhtarev I., Meckbach R., Petrov S.A., Sholom S. Comparison of retrospective luminescence dosimetry with computational modelling in two highly contaminated settlements downwind of the Chernobyl NPP. Health Physics, 2004, vol. 86, no. 1. pp. 25-41.

16. Bailiff I.K., Stepanenko V.F., Göksu H.Y., Bøtter-Jensen L., Correcher V., Delgado A., Jungner H., Khamidova L.G., Kolizshenkov T.V., Meckbach R., Petin D.V., Orlov M.Yu., Petrov S.A. Retrospective luminescence dosimetry: development of approaches to application in populated areas downwind of the Chernobyl NPP. Health Physics, 2005, vol. 89, no. 3, pp. 233-246.

17. Bailiff I.K., Stepanenko V.F. Retrospective dosimetry for population in areas affected by fallout from the Semipalatinsk Nuclear Test Site: Report IC15-CT98-0216. EU, Brussels, 2001. 186 p.

18. Bailiff I.K., Stepanenko V.F., Göksu H.Y., Jungner H., Balmukhanov S.B., Balmukhanov T.S., Khamidova L.G., Kisilev V.I., Kolyado I.B., Kolizshenkov T.V., Shoikhet Y.N., Tsyb A.F. The application of retrospective luminescence dosimetry in areas affected by fallout from the Semipalatinsk nuclear test site: An evaluation of potential. Health Physics, 2004, vol. 87, no. 6, pp. 625-641.

19. Bøtter-Jensen L. Development of Optically Stimulated Luminescence Techniques Using Natural Minerals and Ceramics, and their Application to Retrospective Dosimetry. Roskilde, RISøE Nat. Lab, 2000. 186 p.

20. Bøtter-Jensen L.G. Luminescence techniques: instrumentation and methods. Radiat. Meas., 1997, vol. 17, pp. 749-768.

21. Bøtter-Jensen L., Murray A.S. Developments in optically stimulated luminescence techniques for dating and retrospective dosimetry. Radiat. Prot. Dosim., 1999, vol. 84, pp. 307-316.

22. Stepanenko V.F., Hoshi M., Bailiff I.K., Ivannikov A.I., Toyoda S., Yamamoto M., Simon S.L., Matsuo M., Kawano N., Zhumadilov Z., Sasaki M.S., Rosenson R.I., Apsalikov K.N. Around Semipalatinsk nuclear test site: progress of dose estimations relevant to the consequences of nuclear tests. J. Radiation Research, 2006, vol. 47, suppl. A, pp. A1-A13.

23. Stepanenko V.F., Bailff I.K., Hoshi M. Instrumental and modeling methods of retrospective dosimetry: application for dose reconstruction in high irradiated settlements following Chernobyl accident and nuclear tests in Semipalatinsk nuclear test site. J. Radiation Research, 2007, vol. 4, no. 4, pp. 1-9.

24. Stepanenko V.F., Hoshi M., Yamamoto M., Sakaguchi A., Takada J., Sato H., Iaskova E.K., Kolyzshenkov T.V., Kryukova I.G., Apsalikov K.N., Gusev B.I., Jungner H. International intercomparison of retrospective luminescence dosimetry method: Sampling and distribution of brick samples from Dolon’ village, Kazakhstan. J. Radiation Research, 2006, vol. 47, suppl. A, pp. A15-A21.

25. Stepanenko V.F., Hoshi M, Ivannikov A.I., Bailiff I.K., Zhumadilov K., Skvortsov V.G., Argembaeva R., Tsyb A.F. The 1st nuclear test in the former USSR of 29 August 1949: Comparison of individual dose estimates by modeling with EPR retrospective dosimetry and luminescence retrospective dosimetry data for Dolon village, Kazakhstan. Radiation Measurements, 2007, vol. 42, no. 6-7, pp. 1041-1048.

26. Akselrod M.S., Kortov V.S., Kravetsky D.J., Gotlib V.l. Highly sensitive thermoluminescent anion-defective alpha-Al2O3:C single crystal detectors. Radiation Protection Dosimetry, 1990, vol. 33, no. 4, pp. 119-122.

27. Lamart S., Bouville A., Simon S.L., Eckerman K.F., Melo D., Lee C. Comparison of internal dosimetry factors for three classes of adult computational phantoms with emphasis on I-131 thyroid. Phys. Med. Biol., 2011, vol. 56, no. 22, pp. 7317-7335.

28. McDougall I.R. The importance of obtaining thyroid uptake measurement in patients with hyperthyroidism. Nucl. Med. Commun., 1990, vol. 11, pp. 73-76.

29. Oddie T.H., Myhill J., Pirnique F.G. Effect of age and sex on the radioiodine uptake in euthyroid subjects. J. Clin. Endocrinol. Metab., 1968, vol. 28, pp. 776-782.

«Radiation & Risk», 2014. Vol. 23. No.4